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Abstract

This article investigates the improvement in the pricing of Korean KOSPI 200 index options

when stochastic volatility is taken into account. We compare empirical performances of four classes

of stochastic volatility option pricing models: (1) the ad hoc Black and Scholes procedure that fits the

implied volatility surface, (2) Heston and Nandi’s [Rev. Financ. Stud. 13 (2000) 585] GARCH type

model, (3) Madan et al.’s [Eur. Financ. Rev. 2 (1998) 79] variance gamma model, and (4) Heston’s

[Rev. Financ. Stud. 6 (1993) 327] continuous-time stochastic volatility model. We find that Heston’s

model outperforms the other models in terms of effectiveness for in-sample pricing, out-of-sample

pricing and hedging. Looking at valuation errors by moneyness, pricing and hedging errors are

highest for out-of-the-money options, and decrease as we move to in-the-money options in all

models. The stochastic volatility models cannot mitigate the ‘‘volatility smiles’’ effects found in

cross-sectional options data, but can reduce the effects better than the Black and Scholes model.

Heston and Nandi’s model shows the worst performance, but the performance of the Black and

Scholes model is not too far behind the stochastic volatility option pricing model.
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1. Introduction

Since Black and Scholes (1973) published their seminal article on option pricing, there

has been much theoretical and empirical work on option pricing. Numerous empirical

studies have found that the Black–Scholes model (henceforth BS) results in systematic

biases across moneyness and maturity. It is well known that after the October 1987 crash,

the implied volatility computed from options on the stock index in the US market inferred

from BS appears to be different across exercise prices. This is the so-called ‘‘volatility

smiles’’. Of course, given BS assumptions, all option prices on the same underlying

security with the same expiration date but with different exercise prices should have the

same implied volatility. However, the ‘‘volatility smiles’’ pattern suggests that BS tends to

misprice deep in-the-money and deep out-of-the-money options.1

There have been various attempts to deal with this apparent failure of BS. One

important direction along which the BS formula can be modified is to generalize the

geometric Brownian motion that is used as a model for the dynamics of log stock prices.

For example, Hull and White (1987), Johnson and Shanno (1987), Scott (1987), Wiggins

(1987), Melino and Turnbull (1990, 1995), Stein and Stein (1991) and Heston (1993)

suggest a continuous-time stochastic volatility model. Merton (1976), Bates (1991) and

Naik and Lee (1990) propose a jump-diffusion model. Duan (1995) and Heston and Nandi

(2000) develop an option pricing model based on the GARCH process. Recently, Madan

et al. (1998) use a three-parameter stochastic process, termed the variance gamma process,

as an alternative model for the dynamics of log stock prices.

This wide range of stochastic volatility models that account for non-constant volatility

requires comparison. Previously, Bakshi et al. (1997) evaluated the performance of

alternative models for the S&P 500 index option contracts. They examined how much

each additional feature improves the pricing and hedging performance. They showed that

the stochastic volatility term provides a first-order improvement over BS. In addition,

other factors such as the stochastic interest rate or the jump diffusion have a marginal

effect.2 To this end, we have a horse race competition among alternative stochastic

volatility models to gauge pricing and hedging performance.

Thus we are comparing the relative empirical performance of four classes of stochastic

volatility option pricing models. The first class of stochastic volatility models is the ad hoc

Black and Scholes procedure (henceforth AHBS) dealt by Dumas et al. (1998). Assuming

that option prices are given for all strikes and for all maturities, AHBS fits a volatility

function for the underlying asset price process to the prices of option contracts. Once the

volatility function is determined, it can be used to price and hedge other derivative assets.

The second class of stochastic volatility models is the GARCH type option pricing

model (henceforth GARCH) of Heston and Nandi (2000). The autoregressive structure of

the GARCH process captures empirical appearances like volatility clustering, leptokurtic

return distributions and leverage effects. We choose this model because it yields the closed

form solution.
1 In-the-money, at-the-money and out-of-the-money is henceforth ITM, ATM and OTM, respectively.
2 For the KOPSI 200 index option, Jung (2001) showed the same result as Bakshi et al. (1997).
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The third class of stochastic volatility models is the variance gamma option pricing

model (henceforth VG). The variance gamma process derived by Madan and Milne (1991)

is aimed at providing a model for a log-return distribution that offers physical interpre-

tation and incorporates both long-tailness and skewness characteristics in a log-return

distribution. Using this process, Madan et al. (1998) derived the closed-form solution of

the European call option.

The fourth class of stochastic volatility models is the continuous-time stochastic

volatility model (henceforth SV) of Heston (1993) which models the square of the

volatility process with mean-reverting dynamics, allowing for changes in the underlying

asset price to be contemporaneously correlated with changes in the volatility process. We

choose this model among other continuous-time stochastic models because of the

allowance of the correlation between asset returns and volatility, and it yields the closed

form solution.

Moreover, we compare alternative stochastic volatility option pricing models with the

simplest but still valuable option pricing model, BS.

This study fills two gaps. First, this study considered improvements over BS by

allowing stochastic volatility terms in pricing the KOSPI 200 index options. Although

there are several studies that have examined the performance of the stochastic volatility

option pricing models in major markets, such as S&P 500 and FTSE 100, no study has

investigated their performance in emerging markets like the Korean options market. We

doubt whether the stochastic volatility model exhibits an effective value in emerging

markets. Most market practitioners in emerging markets still use BS, and markets

reflecting this viewpoint can show that BS does not render such bad results in either

pricing or hedging performances. Moreover, an important point mentioned by Bakshi et

al. (1997) is ‘‘The volatility smiles are the strongest for short-term options (both calls

and puts), indicating that short-term options are the most severely mispriced by BS and

present perhaps the greatest challenge to any alternative option pricing model’’. Thus the

KOSPI 200 index options market with liquidity, which is concentrated in the nearest

expiration contract, will be an excellent sample market to investigate mispricing of

short-term options. Second, while there are several papers that compare the incremental

contribution of the stochastic volatility or the jump diffusion in explaining option pricing

biases, there is a paucity of studies that compare alternative stochastic volatility option

pricing models.

It has been found that SVoutperforms other models in the in-sample, out-of-sample and

hedging. Looking at the valuation errors by moneyness, the pricing and hedging errors are

highest for OTM options and decrease as we move to ITM options in all models. The

stochastic volatility models cannot mitigate the ‘‘volatility smiles’’ effects found in cross-

sectional options data, but they can reduce the effects better than BS. GARCH shows the

worst performance, but the performance of BS is not too far behind the stochastic volatility

option pricing models.

The outline of this paper is as follows. Alternative stochastic volatility option pricing

models are reviewed in Section 2. The data used for analysis are described in Section 3.

Section 4 describes estimation methods. Section 5 describes parameter estimates of each

model and evaluates pricing and hedging performances of alternative models. Section 6

concludes our study by summarizing the results.
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2. Model

According to the option pricing theory, European options are priced by evaluating the

expectation of the discounted terminal payoff of the option at maturity under an equivalent

risk neutral measure Q. Hence the price of a European call with a strike price of K and

maturity s is given by

Cðt; s;KÞ ¼ e�rsE
Q
t ½maxðStþs � K; 0Þ� ð1Þ

where Et
Q [�] represents the conditional expectation under the risk-neutral density.

Bakshi and Madan (2000) show that Eq. (1) can be decomposed into two components

as

C ¼ SP1 � Ke�rsP2 ð2Þ

where

P1 ¼ E
Q
t

Stþs

St
1½Stþs>K�

� �
;

P2 ¼ E
Q
t 1½Stþs>K�
� �

and the indicator function 1[St + s
>K] is a unity when St + s>K. The price of a European put

can be determined from the put–call parity.

In the rest of this section, we display only the probability P1 and P2 of each model.

2.1. AHBS

Since GARCH, VG and SV have more parameters than BS, they may have an unfair

advantage over BS. Therefore, we follow Dumas et al. (1998) and construct AHBS in

which each option has its own implied volatility depending on a strike price and time to

maturity. Specifically, the spot volatility of the asset that enters BS is a function of the

strike price and the time to maturity or a combination of both. However, we consider only

the function of the strike price because the liquidity of the KOPSI 200 index options

market is concentrated in the nearest expiration contract. Even if there are options with

multiple maturities in a specific day, only the function of the strike price is applied. This is

because parameters of that day must be plugged into the following day’s data, and that data

may have options with a single maturity in out-of-sample pricing and hedging.

Specifically we adopt the following specification for the BS implied volatilities:

rn ¼ b1 þ b2ðS=KnÞ þ b3ðS=KnÞ2 ð3Þ

where rn is the implied volatility for an nth option of strike Kn and spot price S.

We follow a four-step procedure. First, we abstract the BS implied volatility from each

option. Second, we estimate the bi (i = 1, 2, 3) by ordinary least squares. Third, using

estimated parameters from the second step, we plug in each option’s moneyness into the
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equation, and obtain the model-implied volatility for each option. Finally, we use volatility

estimates computed in the third step to price options with the BS formula.

AHBS, although theoretically inconsistent, can be a more challenging benchmark than

the simple BS for any competing option valuation model.

2.2. GARCH

The importance of the GARCH option pricing model has recently expanded due to its

linkage with continuous-time stochastic models that are difficult to implement. The

volatility of continuous-time stochastic models is not readily identifiable with discrete

observations on the underlying asset price process. In contrast, GARCH models have the

advantage that volatility is observable from the history of underlying asset prices.

Other existing GARCH models do not have closed-form solutions for option values.

These models are typically solved by simulation (Engle and Mustafa, 1992; Amin and Ng,

1993; Duan, 1995) that require slow and computationally intensive empirical work. In

contrast, Heston and Nandi (2000) develop a closed form solution for European option

values and hedge ratios.

Under risk-neutral dynamics, the single lag version of their model takes the following

form:

ln
Stþ1

St

� �
¼ r � 1

2
htþ1 þ

ffiffiffiffiffiffiffiffi
htþ1

p
Ztþ1; ð4Þ

htþ1 ¼ x þ bht þ aðZt � c
ffiffiffiffi
ht

p
Þ2: ð5Þ

They derive risk neutral probabilities of European call option prices in a closed form,

assuming that the value of a call option with one period to expiration obeys the BS formula

as follows:

P1 ¼
1

2
þ 1

p

Z l

0

Re
e�i/ln½K�f ð/ � iÞ

i/

� �
d/; ð6Þ

P2 ¼
1

2
þ 1

p

Z l

0

Re
e�i/ln½K�f ð/Þ

i/

� �
d/; ð7Þ

where Re[�] denotes the real part of complex variables, i is the imaginary number,
ffiffiffiffiffiffiffi
�1

p
,

f(/) = exp(A(t; T, /) +B(t; T, /)ht + 1 + i/ln[St]), A(t; s, /) and B(t; s, /) are functions of a,
b, c and x.

2.3. VG

The variance gamma approach proposed by Madan and Seneta (1990), Madan and

Milne (1991) has the advantage that additional parameters in the variance gamma process

provide control over the skewness and kurtosis of the return distribution.
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The variance gamma process is obtained by evaluating Brownian motion with drift at a

random time given by a gamma process. Let

bðt; h; rÞ ¼ ht þ rW ðtÞ ð8Þ

where W(t) is a standard Brownian motion. The process b(t; h, r) is a Brownian motion

with drift h and volatility r. The gamma process c(t; l, m) with mean rate l and variance

rate m is the process of independent gamma increments over non-overlapping intervals. VG

process, X(t; r, m, h), is defined in terms of the Brownian motion with drift b(t; h, r) and
the gamma process with unit mean rate, c(t; 1, m) as X(t; r, m, h) = b(c(t; 1, m), h, r).

Thus, the assumed process of the underlying asset, St, is given by replacing the role of

Brownian motion in the original Black–Scholes geometric Brownian motion model by the

variance gamma process as follows:

St ¼ S0 exp½mt þ X ðt; r; m; hÞ þ wt� ð9Þ

where S0 is the initial stock price, m is the mean rate of stock return, and

w= (1/m)ln(1� hm� r2m/2).
Based on the above process, Madan et al. (1998) derive risk neutral probabilities for the

price of a European option as follows:

P1 ¼ u d

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c1

m

r
; ða þ rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m

1� c1

r
;
s
m

" #
; ð10Þ

P2 ¼ u d

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

m

r
; a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m

1� c2

r
;
s
m

" #
; ð11Þ

where uða; b; cÞ ¼ ml0 U affiffi
g

p þ b
ffiffiffi
g

p� �
gc�1e�g

CðcÞ dg, U(�) is the cumulative distribution function

of a standard normal distribution, and C(�) is the gamma function.

2.4. SV

Heston (1993) provided a closed-form solution for pricing a European style option

when volatility follows a mean-reverting square-root process. The actual diffusion

processes for the underlying asset and its volatility are specified as

dS ¼ lSdt þ ffiffiffiffi
mt

p
SdWS ; ð12Þ

dmt ¼ jðh � mtÞdt þ r
ffiffiffiffi
mt

p
dWm; ð13Þ

where dWS and dWm have an arbitrary correlation q, mt is the instantaneous variance. j is

the speed of adjustment to the long-run mean h, and r is the variation coefficient of

variance.
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Given the dynamics in Eqs. (12) and (13), Heston (1993) shows that risk neutral

probabilities of a European call option with s periods to maturity is given by

Pj ¼
1

2
þ 1

p

Z l

0

Re
e�i/ln½K�fjðx; mt; s;/Þ

i/

� �
d/ ðj ¼ 1; 2Þ ð14Þ

where Re[�] denotes the real part of complex variables, i is the imaginary number,
ffiffiffiffiffiffiffi
�1

p
,

fj(x,mt,s;/) = exp[C(s;/) +D(s;/)mt+ i/x] and C(s;/) and D(s;/) are functions of h, j, q, r
and mt.

Because BS is already generally known, we do not display it separately.
3. Data

In July 7 1997, the Korean exchange for options introduced the KOSPI 200 index

options. The KOSPI 200 options market has become one of the fastest growing

markets in the world, despite its short history. Its daily trading volume reached 1.2

million contracts in November 2000, marking the most active index options product

internationally.

Three consecutive near-term delivery months and one additional month from the

quarterly cycle (March, June, September and December) make up four contract months.

The expiration day is the second Thursday of each contract month. Each options

contract month has at least five strike prices. The number of strike prices may, however,

increase according to the price movement. Trading in the KOSPI 200 index options is

fully automated. The exercise style of the KOSPI 200 options is European and thus

contracts can be exercised only on the expiration dates. Hence our test results are not

affected by the complication that arises due to the early exercise feature of American

options. Moreover, it is important to note that liquidity is concentrated in the nearest

expiration contract.

The sample period extends from January 3, 1999 through December 26, 2000. The

minute-by-minute transaction prices for the KOSPI 200 options are obtained from the

Korea Stock Exchange. The 3-month treasury yields were used as risk-free interest rates.3

Because KOSPI 200 contracts are European-style, index levels were adjusted for dividend

payments before each option’s expiration date. The KOSPI 200 index pays dividends only

at the end of March, June, September and December, which are used for adjustment

dates.4

The following rules are applied to filter data needed for the empirical test.

1. For each day in the sample, only the last reported transaction price, which has to occur

between 2:30 and 3:00 p.m., of each option contract is employed in the empirical test.
3 Korea does not have a liquid Treasury bill market, so the 3-month Treasury yield is used in spite of the

mismatch of maturity of options and interest rates.
4 We assume that traders have perfect knowledge about future dividend payments because options in this

study have short time-to-maturities.



Table 1

KOSPI 200 options data

S/K 1999 2000 All

Call Put Call Put Call Put

< 0.94 1.80 (584) 11.45 (268) 1.41 (982) 12.75 (600) 1.55 (1566) 12.35 (868)

0.94–0.97 3.07 (309) 6.48 (253) 2.57 (333) 6.33 (292) 2.81 (642) 6.40 (545)

0.97–1.00 4.19 (308) 4.80 (295) 3.41 (318) 4.53 (309) 3.79 (626) 4.66 (604)

1.00–1.03 5.46 (273) 3.38 (282) 4.72 (255) 3.23 (289) 5.10 (528) 3.30 (571)

1.03–1.06 7.13 (204) 2.27 (266) 6.17 (210) 2.30 (284) 6.64 (414) 2.28 (550)

z 1.06 12.06 (382) 1.36 (789) 9.36 (258) 1.39 (619) 10.97 (640) 1.37 (1408)

All 5.26 (2060) 4.06 (2153) 3.49 (2356) 5.58 (2393) 4.32 (4416) 4.86 (4546)

This table reports average option price, and the number of options, which are shown in parentheses, for each

moneyness, type (call or put) category. The sample period is from January 3, 1999 to December 26, 2000. Daily

information from the last transaction prices (prior to 3:00 p.m.) of each option contract is used to obtain the

summary statistics. Moneyness is defined as S/K, where S denotes the spot price and K denotes the strike price.
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The tight time window is chosen to minimize problems stemming from intra-day

variation in volatility.5

2. An option of a particular moneyness and maturity is represented only once in the

sample. In other words, although the same option may be quoted again during the time

window, only the last record of that option is included in our sample.

3. As options with less than 6 days and more than 90 days, to expiration may induce

liquidity-related biases, they are excluded from the sample.

4. To mitigate the impact of price discreteness on option valuation, prices lower than 0.5

are not included.

5. Prices not satisfying the arbitrage restriction are excluded:

Ct;szSt �
Xs

s¼1

e�rt;ssDtþS � KBt;s;

Pt;szKBt;s � St þ
X
s¼1

e�rt;ssDtþs;

where Bt,s is a zero-coupon bond that pays 1 in s periods from time t and Dt is daily

dividends in time t, rt,s the risk-free interest rate with maturity s at date t.

We divide the option data into several categories according to the moneyness, S/K. Table

1 describes certain sample properties of the KOSPI 200 option prices used in the study.

Summary statistics are reported for the option price and the total number of observations,

according to each moneyness-option type category. Because the liquidity of the KOSPI 200

option contracts is concentrated in the nearest expiration contract, we do not observe the

maturity category separately. Note that there are 4416 call and 4546 put option observations,

with deep OTM options respectively taking up 35% for call and 31% for put.
5 Because the recorded KOPSI 200 index values are not the daily closing index levels, there is no non-

synchronous price issue here, except that the KOSPI 200 index level itself may contain stale component stock

prices at each point in time.



Table 2

Implied volatility

S/K < 0.94 0.94–0.97 0.97–1.00 1.00–1.03 1.03–1.06 z 1.06

Jan. 1999–June 1999 Call 0.5494 0.5370 0.5487 0.5476 0.5824 0.7517

Put 0.4814 0.4640 0.4740 0.4868 0.4940 0.5284

July 1999–Dec. 1999 Call 0.5019 0.4806 0.4750 0.4757 0.5022 0.6245

Put 0.5311 0.4251 0.4387 0.4491 0.4393 0.5089

Jan. 2000–June 2000 Call 0.4230 0.4207 0.4106 0.4136 0.4137 0.4423

Put 0.5240 0.4258 0.4161 0.4208 0.4250 0.4657

July 2000–Dec. 2000 Call 0.5080 0.4903 0.4806 0.4813 0.4879 0.5509

Put 0.6440 0.4944 0.5033 0.4968 0.5154 0.5302

This table reports the implied volatilities calculated by inverting the Black–Scholes model separately for each

moneyness category. The implied volatilities of individual options are then averaged within each moneyness

category and across the days in the sample. Moneyness is defined as S/K, where S denotes the spot price and K

denotes the strike price.
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Table 2 presents the ‘‘volatility smiles’’ effects for four consecutive subperiods. We

employ six fixed intervals for the degree of moneyness, and compute the mean over

alternative subperiods of the implied volatility. It is interesting to note that the Korean

options market seems to be ‘‘smiling’’ independent of the subperiods employed in the

estimation. So, we recognize the need of the stochastic volatility option pricing model to

mitigate this effect.
4. Estimation procedure

In applying option pricing models, one always encounters the difficulty that spot

volatility and structural parameters are unobservable. We follow the estimation method

similar to standard practices (e.g. Bakshi et al., 1997, 2000; Bates, 1991, 2000; Kirgiz, 2001;

Lin et al., 2001; Nandi, 1998), and estimate parameters of each model every sample day.

Since closed-from solutions are available for an option price, a natural candidate for the

estimation of parameters which enter the pricing and hedging formula is a non-linear least

squares procedure involving minimization of the sum of squared errors between the model

and market prices.

Estimating parameters from the physical asset returns can be an alternative, but

historical data reflect only what happened in the past. Further, the procedure using

historical data is not able to identify volatility risk premiums that have to be estimated

from the options data conditional on the estimates of other parameters. The important

advantage of using option prices to estimate parameters is to allow one to use the forward-

looking information contained in the option prices.

Let Oi(t, s; K) denote the market price of option i on day t, and let Oi*(t, s; K) denote the
model price of the option i on day t. To estimate parameters of each model, we minimize

the sum of squared percentage errors between model and market prices:

min
XN Oiðt; s;KÞ � Oi*ðt; s;KÞ

� �2
ðt ¼ 1; . . . ; TÞ ð15Þ
/t i¼1
Oiðt; s;KÞ
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where N denotes the number of options on day t, and T denotes the number of days in the

sample. Conventionally, the objective function to minimize the sum of squared errors is

used. But we adopt the above function because the fit for OTM options under the

conventional method that gives more weight to relatively expensive ITM options is the

worst.6

For BS, the volatility parameter, r, is estimated. For GARCH, we estimate the

structural parameters, {a, b, c, x} and conditional variance, ht + 1, is not estimated as an

additional parameter but determined from the daily history of index returns and the

structural parameters on day t. The starting variance, h0, is the estimate of the variance for

the past 1 year, computed from daily logarithmic returns. For VG, the unobservable

volatility parameter m with structural parameters {a, r} is estimated. For SV, we estimate

the unobservable volatility parameter mt with structural parameters {h, j, q, r}. As

mentioned before, the coefficients for AHBS are estimated via ordinary least squares.
5. Empirical findings

In this section, we compare empirical performances of alternative stochastic volatility

models with respect to three metrics: (1) in-sample performance, (2) out-of-sample

performance, and (3) hedging performance.

The analysis is based on four measures: mean absolute errors (henceforth MAEs), mean

percentage errors (henceforth MPEs), mean absolute percentage errors (henceforth

MAPEs), and mean squared errors (henceforth MSEs). MAEs and MAPEs measure the

magnitude of pricing errors, while MPEs indicate the direction of the pricing errors. MSEs

measure the volatility of errors. In the remaining sections, we mainly deal with MAPEs,

because the relative comparison considering each option price is important above all else.

5.1. In-sample pricing performance

For each model, Table 3 reports average and standard deviations (in parentheses) of

parameters, which are estimated daily. The implicit parameters are not constrained to be

constant over time. While re-estimating the parameters daily is admittedly potentially

inconsistent with the assumption of constant or slow-changing parameters used in deriving

the option pricing model, such estimation is useful for indicating market sentiment on a

daily basis.

Parameters of other stochastic volatility models except GARCH have large standard

deviations. This shows that the stability of parameters is not supported for each model.

However, as stated thereafter, the pricing performance of the model with parameters

having large standard deviations is better than that of the model with parameters having
6 There was no large difference between results using the sum of squared errors and those using the sum of

squared percentage errors in our sample.



Table 3

Parameter estimates

BS AHBS VG GARCH SV

r 0.4712

(0.0880)

b1 2.3432

(5.4914)

a 2.2670

(6.7975)

a 2.98e–6

(1.81e� 7)

h 2.8375

(9.8256)

b2 � 3.8371

(10.943)

r 0.4310

(0.1391)

b 0.6420

(0.0595)

j 9.5723

(29.9060)

b3 1.9693

(5.4493)

m 0.0311

(0.0836)

c 316.2083

(23.6614)

q � 0.0348

(0.7867)

x 7.00e� 6

(4.57e� 6)

r 0.5674

(0.3040)

m 0.2856

(0.3456)

The table reports the mean and standard deviation (in parentheses) of the parameter estimates for each model. BS

is the Black–Scholes model in which a single implied volatility is estimated across all strikes and maturities on a

given day. AHBS is the ad hoc BS procedure in which regression specification is estimated as follows:

rn ¼ b1 þ b2S=Kn þ b3ðS=KnÞ2:

VG, GARCH and SV are Madan et al.’s (1998) variance gamma model, Heston and Nandi’s (2000) GARCH

type discrete model and Heston’s (1993) continuous-time stochastic volatility model in which each parameter

is estimated by minimizing the sum of percentage squared errors between model and market option prices

every day.
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small ones, i.e. it is found that the stability of interdependence among parameters is more

important than that of parameters in option pricing and hedging.

The implied correlation coefficient is negative as we expected.7 This is consistent with

the leverage effect documented by Black (1976) and Christie (1982), whereby lower

overall firm values increase the volatility of equity returns, and the volatility feedback

effects of Poterba and Summers (1986) whereby higher volatility assessments lead to

heavier discounting of future expected dividends and thereby lower equity price.

We evaluate the in-sample performance of each model by comparing market prices with

model prices computed by using the parameter estimates from the current day. Table 4

reports the in-sample valuation errors for alternative models computed over the whole

sample of options as well as across six moneyness and two option type categories. Results

from the analysis are as follows.

First, with respect to MAPEs and MAEs, SV shows the best performance followed by

VG. However, according to MSEs, the order has been changed. For call options, AHBS

has the fewest errors followed by SV. For put options, BS has the best performance

followed by SV. On the whole, SV is the best for the in-sample pricing.

Unexpectedly, AHBS is not better than BS although AHBS has more parameters than

BS does. This result can be explained by the lower R2 compared to advanced markets. In

our study, the R2 of AHBS is 22% on average, which is quite low. In the study of Kirgiz
7 The positive a and c of VG and GARCH indicate a negative correlation, respectively.
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(2001) on the S&P 500, the R2 was 93%. Because of the low R2, AHBS seems to lead to a

relatively large in-sample errors.

In the moneyness-based error, for call options, SV has the fewest errors except deep

ITM options where AHBS does. For put options, AHBS in deep ITM, GARCH in ITM
Table 4

In-sample pricing errors

S/K < 0.94 0.94–0.97 0.97–1.00 1.00–1.03 1.03–1.06 z 1.06 All

Panel A: Calls

MPE BS 0.0305 0.0441 0.0159 0.0066 0.0150 0.0258 0.0254

AHBS � 0.1176 0.0283 0.0099 0.0000 0.0018 0.0063 � 0.0351

GARCH 0.2000 0.0864 0.0253 � 0.0031 � 0.0024 0.0141 0.0885

VG � 0.0218 0.0386 0.0364 0.0280 0.0275 0.0275 0.0130

SV 0.0280 0.0046 0.0027 0.0104 0.0207 0.0280 0.0188

MAPE BS 0.1635 0.1538 0.1269 0.1049 0.0843 0.0640 0.1280

AHBS 0.2687 0.1640 0.1230 0.0934 0.0700 0.0457 0.1609

GARCH 0.2497 0.1920 0.1508 0.1215 0.0947 0.0672 0.1710

VG 0.1112 0.1206 0.1201 0.1152 0.0944 0.0667 0.1063

SV 0.0808 0.1126 0.1086 0.0989 0.0856 0.0666 0.0899

MAE BS 0.2572 0.4344 0.4659 0.5415 0.5780 0.7230 0.4442

AHBS 0.3552 0.4269 0.4384 0.4704 0.4734 0.4904 0.4219

GARCH 0.3651 0.5471 0.5582 0.6213 0.6423 0.7439 0.5305

VG 0.1810 0.3426 0.4422 0.5921 0.6445 0.7447 0.4158

SV 0.1380 0.3227 0.4006 0.5038 0.5771 0.7433 0.3752

MSE BS 0.1806 0.4924 0.4207 0.5974 0.7072 1.5614 0.5593

AHBS 0.3632 0.4035 0.3602 0.4517 0.4953 0.7772 0.4516

GARCH 0.3038 0.7132 0.5664 0.7362 0.8379 1.5856 0.6883

VG 0.1107 0.3469 0.3601 0.6929 0.8401 1.5922 0.5331

SV 0.0734 0.3234 0.3203 0.4883 0.6611 1.5957 0.4716

Panel B: Puts

MPE BS 0.0169 � 0.0277 � 0.0345 � 0.0347 � 0.0245 0.0692 0.0094

AHBS 0.0051 � 0.0312 � 0.0402 � 0.0507 � 0.0839 � 0.1538 � 0.0722

GARCH 0.0271 � 0.0099 � 0.0246 � 0.0517 � 0.0894 � 0.0856 � 0.0431

VG 0.0128 � 0.0307 � 0.0189 0.0103 0.0381 0.0701 0.0239

SV 0.0132 � 0.0371 � 0.0478 � 0.0438 � 0.0280 0.0343 � 0.0066

MAPE BS 0.0528 0.0858 0.1030 0.1235 0.1355 0.1651 0.1171

AHBS 0.0396 0.0796 0.1029 0.1375 0.1856 0.2745 0.1555

GARCH 0.0523 0.0791 0.0990 0.1327 0.1692 0.1855 0.1272

VG 0.0581 0.0964 0.1008 0.0963 0.0941 0.1290 0.0995

SV 0.0569 0.0911 0.1031 0.1096 0.0985 0.0851 0.0876

MAE BS 0.6407 0.5286 0.4494 0.3726 0.2771 0.2159 0.3926

AHBS 0.4561 0.4917 0.4490 0.4055 0.3438 0.3225 0.3981

GARCH 0.6556 0.4985 0.4356 0.3904 0.3233 0.2350 0.4039

VG 0.6901 0.5991 0.4530 0.3220 0.2192 0.1792 0.3863

SV 0.6875 0.5624 0.4490 0.3318 0.2092 0.1230 0.3626

MSE BS 1.0362 0.5103 0.3567 0.2447 0.1401 0.1251 0.3929

AHBS 0.5089 0.4872 0.3571 0.2925 0.2239 0.6908 0.4808

GARCH 1.1775 0.4643 0.3316 0.2693 0.1758 0.1487 0.4260

VG 1.1371 0.6799 0.3774 0.2269 0.1160 0.1157 0.4272

SV 1.1688 0.5667 0.3499 0.2009 0.0910 0.0787 0.3962
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and ATM, VG in ATM and OTM and SV in deep OTM, show the best performance. But

SV has the fewest errors on average, because the number of samples is concentrated in

deep OTM. In the direction of pricing errors, there is no specific property except that BS

undervalues call options for all moneyness.

Compared with the studies of advanced markets, BS shows good results. BS does

not have the best performance but it makes quite a good fit considering that it uses

only one parameter. The performance of GARCH is different than Heston and Nandi

(2000), who find GARCH to perform better than AHBS. This different result can be

explained by the difference of the data sets applied. They exclude options with deep

ITM and deep OTM, but we include them because there is a large portion in the data

set.

Second, all models show moneyness-based valuation errors, and exhibit the worst

fit for the OTM options. The fit of the models, as measured by MAPEs, steadily

decrease as we move from OTM to ITM options except that MAPEs of VG and SV

increase to the second OTM and decrease after that. Although the objective function

to minimize the percentage errors to mitigate moneyness-based errors is used, this bias

continues.

To sum up, SV shows the best in-sample performance.

5.2. Out-of-sample pricing performance

The output of the in-sample performance can be biased due to the potential

problem of over-fitting to the data. A good in-sample fit might be a consequence of

having an increasingly larger number of structural parameters. To lower the impact of

this connection on inferences, we turn to examining the model’s out-of-sample cross-

sectional pricing performance. In the out-of-sample pricing, the presence of more

parameters may actually cause over-fitting, and have the model penalized if the extra

parameters do not improve structural fitting. This analysis also has the purpose of

assessing each model’s parameter stability over time. To control for parameter stability

over alternative time periods, we analyze out-of-sample valuation errors for the next

day (week). We use the current day’s estimated structural parameters to price options

on the next day (week).
Notes to Table 4:

This table reports in-sample pricing errors for the KOSPI 200 option with respect to moneyness. S/K is defined

as moneyness, where S denotes the asset price and K denotes the strike price. Each model is estimated every

day during the sample period and in-sample pricing errors are computed using parameters estimated from the

current day. Denoting en =On�On*, where On is the market and On* is the model price, pricing performance is

evaluated by: (1) mean percentage error (MPE), ð
PN

n¼1 en=OnÞ=N, (2) mean absolute percentage error (MAPE),

ð
PN

n¼1 AenA=OnÞ=N , (3) mean absolute error (MAE), ð
PN

n¼1 AenAÞ=N , and (4) mean squared error (MSE),

ð
PN

n¼1ðenÞ
2Þ=N , where N is the total number of options in a particular moneyness category. BS denotes the

Black and Scholes model, AHBS denotes the ad hoc Black and Scholes procedure that fits to the implied

volatility surface, GARCH denotes Heston and Nandi’s (2000) GARCH type discrete model, VG denotes

Madan et al.’s (1998) variance gamma model, and SV denotes Heston’s (1993) continuous-time stochastic

volatility model.
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For the other models except GARCH, the current day’s estimated instantaneous

volatility and structural parameters are used to price options for the next day (week).

For GARCH, a conditional variance ht + 1 is computed by iterating the volatility
Table 5

One day ahead out-of-sample pricing errors

S/K < 0.94 0.94–0.97 0.97–1.00 1.00–1.03 1.03–1.06 z 1.06 All

Panel A: Calls

MPE BS 0.0281 0.0339 0.0115 0.0036 0.0133 0.0245 0.0217

AHBS � 0.1042 0.0231 0.0073 � 0.0040 0.0025 0.0074 � 0.0318

GARCH 0.2113 0.1253 0.0217 � 0.0072 � 0.0057 0.0352 0.0999

VG � 0.0320 0.0302 0.0332 0.0281 0.0281 0.0267 0.0077

SV 0.0270 0.0152 0.0014 � 0.0061 0.0064 0.0190 0.0144

MAPE BS 0.2205 0.1755 0.1384 0.1103 0.0875 0.0633 0.1540

AHBS 0.3438 0.1766 0.1332 0.1031 0.0822 0.0584 0.1951

GARCH 0.3018 0.2025 0.1612 0.1324 0.1050 0.0749 0.1958

VG 0.1955 0.1549 0.1364 0.1189 0.0950 0.0656 0.1437

SV 0.1923 0.1512 0.1259 0.1080 0.0882 0.0667 0.1383

MAE BS 0.3219 0.4861 0.5088 0.5634 0.5954 0.7189 0.4842

AHBS 0.4554 0.4816 0.4862 0.5204 0.5558 0.6642 0.5109

GARCH 0.4668 0.5623 0.5689 0.7709 0.6944 0.7789 0.5981

VG 0.2776 0.4189 0.5017 0.6101 0.6485 0.7356 0.4712

SV 0.2788 0.4182 0.4660 0.5394 0.5933 0.7450 0.4554

MSE BS 0.2400 0.5710 0.4872 0.6383 0.7186 1.5632 0.6070

AHBS 0.7870 0.5864 0.4283 0.5270 0.6099 1.4003 0.7481

GARCH 0.6547 0.7796 0.6823 0.8975 0.9625 2.0589 0.9382

VG 0.1997 0.4549 0.5145 0.7521 0.8357 1.5791 0.6076

SV 0.2376 0.5317 0.3991 0.5658 0.6765 1.6232 0.5868

Panel B: Puts

MPE BS 0.0183 � 0.0280 � 0.0359 � 0.0430 � 0.0331 0.0554 0.0031

AHBS 0.0090 � 0.0315 � 0.0397 � 0.0600 � 0.0850 � 0.2404 � 0.0995

GARCH 0.0332 � 0.0189 � 0.0256 � 0.0679 � 0.0867 � 0.1539 � 0.0660

VG 0.0132 � 0.0306 � 0.0214 0.0034 0.0309 0.0634 0.0196

SV 0.0159 � 0.0332 � 0.0465 � 0.0560 � 0.0437 0.0206 � 0.0133

MAPE BS 0.0533 0.0903 0.1061 0.1364 0.1578 0.1982 0.1327

AHBS 0.0512 0.0906 0.1096 0.1524 0.2010 0.4337 0.2129

GARCH 0.0538 0.0972 0.1027 0.1467 0.1957 0.2846 0.1658

VG 0.0586 0.1011 0.1059 0.1259 0.1427 0.1900 0.1291

SV 0.0566 0.0910 0.1067 0.1334 0.1470 0.1802 0.1258

MAE BS 0.6458 0.5567 0.4692 0.4156 0.3181 0.2513 0.4210

AHBS 0.6208 0.5647 0.4871 0.4618 0.3823 0.4738 0.5020

GARCH 0.6747 0.5956 0.4629 0.4923 0.3614 0.3814 0.4854

VG 0.6938 0.6289 0.4777 0.4046 0.3007 0.2441 0.4351

SV 0.6849 0.5636 0.4640 0.4044 0.2964 0.2263 0.4183

MSE BS 1.0412 0.5674 0.3950 0.3003 0.1875 0.1526 0.4272

AHBS 1.0149 0.6204 0.4374 0.3939 0.2752 1.3018 0.8121

GARCH 1.2406 0.6118 0.3588 0.3809 0.2723 0.1799 0.4944

VG 1.1300 0.7268 0.4215 0.3211 0.1785 0.1493 0.4688

SV 1.1727 0.5712 0.3868 0.4287 0.2360 0.1924 0.4886
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process up to the next day (week) using estimated structural parameters from the

current day.

Tables 5 and 6 report 1 day and 1 week ahead out-of-sample valuation errors for

alternative models computed over the whole sample of options, respectively. First, backed

by each valuation measure, the relative ranking of the models gets changed. In 1 day ahead

out-of-sample pricing, SV shows the best performance for all measures expect MSEs of

put options, closely followed by BS and VG. In MSEs of put options, BS has the smallest

errors followed by VG. In 1 week ahead out-of-sample pricing, for call options, SV and

VG show better performance than other models with respect to MAPEs and MAEs. In

MSEs, VG is the best followed by BS. For put options, SV shows the best performance

closely followed by BS and VG. As a result, SV can be the best model in out-of-sample

pricing, too.

Second, pricing errors deteriorate when shifting from the in-sample pricing to the out-

of-sample pricing. The average of MAPEs of all models from a call (put) option is 13.12%

(11.74%) for in-sample pricing, and grows to 16.54% (15.33%) for 1 day ahead out-of-

sample pricing. There is not a striking contrast between the errors of in-sample pricing and

1 day ahead out-of-sample pricing. But, in 1 week ahead out-of-sample pricing errors, the

errors grow to 21.40% (23.52%), which is double the in-sample pricing errors for call (put)

options.

Third, the difference between BS and SV that show better performance rather than

other models grows smaller in the out-of-sample pricing. The ratio of MAPEs from BS to

SV is 1.424 (1.337) for in-sample errors of call (put) options. This ratio changes to 1.114

(1.050) and 1.021 (1.009) for 1 day and 1 week ahead out-of-sample errors, respectively.

As the term of out-of-sample pricing gets longer, the difference between two models

decreases. It is found that BS with a single parameter can have an advantage over other

complicated models, especially in long-term forecasting.

Fourth, as in-sample pricing errors, out-of-sample pricing errors show moneyness-

based biases. MAPEs decrease from OTM to ATM and then to ITM options for all

models.

As was the case of in-sample pricing performances, BS exhibits a good fit for out-of-

sample pricing contrary to performances in the advanced markets. This result shows BS is

competent for out-of-sample pricing with the advantage of simplicity in the emerging
Notes to Table 5:

This table reports 1 day ahead out-of-sample pricing errors for the KOSPI 200 option with respect to moneyness.

S/K is defined as moneyness, where S denotes the asset price and K denotes the strike price. Each model is

estimated every day during the sample period and 1 day ahead out-of-sample pricing errors are computed using

parameters estimated the previous trading day. Denoting en =On�On* where On is the market and On* is the

model price, pricing performance is evaluated by: (1) mean percentage error (MPE), ð
PN

n¼1 en=OnÞ=N, (2) mean

absolute percentage error (MAPE), ð
PN

n¼1 AenA=OnÞ=N, (3) mean absolute error (MAE), ð
PN

n¼1 AenAÞ=N, and (4)
mean squared error (MSE), ð

PN
n¼1ðenÞ

2Þ=N , where N is the total number of options in a particular moneyness

category. BS denotes the Black and Scholes model, AHBS denotes the ad hoc Black and Scholes procedure that

fits to the implied volatility surface, GARCH denotes the Heston and Nandi’s (2000) GARCH type discrete

model, VG denotes the Madan et al.’s (1998) variance gamma model, and SV denotes Heston’s (1993)

continuous-time stochastic volatility model.
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markets. Also, GARCH shows the worst performance irrespective of the rebalancing

period except for put options in 1 day ahead pricing.

To further analyze the structure of out-of-sample pricing errors, we have a

regression analysis that uses a combination of moneyness and interest rate as the
Table 6

One week ahead out-of-sample pricing errors

S/K < 0.94 0.94–0.97 0.97–1.00 1.00–1.03 1.03–1.06 z 1.06 All

Panel A: Calls

MPE BS 0.0337 0.0201 � 0.0014 � 0.0035 0.0114 0.0232 0.0187

AHBS � 0.0745 0.0119 � 0.0058 � 0.0131 � 0.0018 0.0108 � 0.0258

GARCH 0.1375 0.0409 0.0255 � 0.0088 � 0.0159 0.0276 0.0598

VG � 0.0257 0.0128 0.0260 0.0248 0.0269 0.0264 0.0059

SV 0.0523 0.0170 � 0.0075 � 0.0091 0.0086 0.0177 0.0217

MAPE BS 0.2874 0.2042 0.1633 0.1225 0.0942 0.0641 0.1879

AHBS 0.4767 0.2136 0.1671 0.1231 0.0973 0.0663 0.2579

GARCH 0.4452 0.2536 0.2019 0.1563 0.1129 0.0716 0.2630

VG 0.2583 0.1894 0.1645 0.1334 0.1017 0.0666 0.1773

SV 0.2852 0.1961 0.1651 0.1233 0.0950 0.0644 0.1841

MAE BS 0.4112 0.5409 0.5956 0.6263 0.6445 0.7258 0.5489

AHBS 0.6360 0.5747 0.6134 0.6267 0.6633 0.7543 0.6423

GARCH 0.5893 0.6296 0.6682 0.8136 0.7239 0.7639 0.6711

VG 0.3623 0.4989 0.5974 0.6849 0.6996 0.7437 0.5418

SV 0.3891 0.5126 0.5878 0.6258 0.6468 0.7216 0.5388

MSE BS 0.3256 0.6029 0.6309 0.7222 0.7691 1.5765 0.6775

AHBS 1.9257 0.7575 0.6947 0.7564 0.8071 1.7176 1.3067

GARCH 0.8623 1.0696 1.0223 1.1346 0.9213 1.6833 1.0722

VG 0.2649 0.5489 0.6245 0.8297 0.8721 1.6009 0.6764

SV 0.3529 0.5740 0.6349 0.6989 0.7721 1.5691 0.6885

Panel B: Puts

MPE BS 0.0211 � 0.0272 � 0.0444 � 0.0539 � 0.0473 0.0233 � 0.0104

AHBS 0.0111 � 0.0313 � 0.0531 � 0.0760 � 0.1036 � 0.4151 � 0.1593

GARCH 0.0453 � 0.0269 � 0.0355 � 0.0839 � 0.1133 � 0.2336 � 0.0959

VG 0.0156 � 0.0304 � 0.0243 � 0.0003 0.0157 0.0378 0.0095

SV 0.0233 � 0.0265 � 0.0454 � 0.0594 � 0.0484 0.0138 � 0.0140

MAPE BS 0.0593 0.1054 0.1347 0.1796 0.2181 0.2972 0.1828

AHBS 0.0607 0.1124 0.1466 0.2042 0.2682 0.6806 0.3134

GARCH 0.6108 0.1131 0.1255 0.1869 0.2529 0.3746 0.3170

VG 0.0632 0.1134 0.1360 0.1743 0.2065 0.2969 0.1818

SV 0.0612 0.1058 0.1350 0.1787 0.2131 0.2974 0.1812

MAE BS 0.7140 0.6714 0.6117 0.5664 0.4651 0.3769 0.5423

AHBS 0.7098 0.7163 0.6653 0.6372 0.5704 0.7394 0.6879

GARCH 0.7229 0.6959 0.6553 0.6159 0.5569 0.5823 0.6336

VG 0.7329 0.7203 0.6210 0.5608 0.4557 0.3750 0.5518

SV 0.7296 0.6739 0.6047 0.5525 0.4469 0.3665 0.5397

MSE BS 1.1710 0.8226 0.6529 0.5501 0.4082 0.3064 0.6226

AHBS 1.1367 1.0308 0.8473 0.7136 0.6855 2.0204 1.2518

GARCH 1.2339 0.7923 0.6422 0.6643 0.5834 0.5428 0.7380

VG 1.0770 0.9735 0.6800 0.5513 0.3987 0.2982 0.6251

SV 1.0738 0.8138 0.6298 0.5567 0.3679 0.2812 0.5922
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explanatory variables. Among others, Madan et al. (1998) and Lam et al. (2002) have

applied this regression for similar purposes. The mathematical expression of the

regression model is

en:t ¼ b0 þ b1ðSt=KnÞ þ b2ðSt=KnÞ2 þ b3sn þ b4rt þ gt ð16Þ

where en.t denote the 1 day ahead absolute percentage pricing error on day t, Kn is the

strike price of the option, sn the time to maturity, and rt the risk-free interest rate at

date t. The square of moneyness is employed to detect smile effects. A complete smile

would result in a negative linear term and a positive quadratic term. The estimated

value and p-values of each parameter are shown in Table 7.

In 1 day ahead out-of-sample pricing errors, moneyness variables are systematically

related to MAPEs for all models. Coefficients of moneyness are significant both in

linear and quadratic components showing a smile shape except that a linear

component of BS and VG is not significant for put options. However, VG and SV

show the best performance in a regression analysis for call and put option,

respectively, because the adjusted R2 coefficient and the F statistics of VG and SV

are the smallest. In 1 week ahead out-of-sample pricing errors, AHBS is the best. But

the ‘‘volatility smiles’’ coefficients of AHBS are significant as well. All models

considering the stochastic volatility show better performance rather than BS except VG

for put options. This result indirectly shows that the addition of the stochastic

volatility term does not settle the ‘‘volatility smiles’’ effects of BS but reduces the

effects a little.

5.3. Hedging performance

Hedging performance is important to gauge the forecasting power of the volatility

of underlying assets. We examine hedges in which only a single instrument (i.e. the

underlying asset) can be employed. For the perfect replicating hedge in the context of

a stochastic volatility model, one needs a position in (1) the underlying asset, (2)

another option with the same maturity but different strike price, and (3) a riskless

bond. However, in practice, option traders usually focus on the risk due to the
Notes to Table 6:

This table reports 1 week ahead out-of-sample pricing errors for the KOSPI 200 option with respect to

moneyness. S/K is defined as moneyness, where S denotes the asset price and K denotes the strike price. Each

model is estimated every day during the sample period and 1 week ahead out-of-sample pricing errors are

computed using parameters estimated 1 week ago. Denoting en =On�On*, where On is the market and On* is the

model price, pricing performance is evaluated by: (1) mean percentage error (MPE), ð
PN

n¼1 en=OnÞ=N, (2) mean

absolute percentage error (MAPE), ð
PN

n¼1 AenA=OnÞ=N, (3) mean absolute error (MAE), ð
PN

n¼1 AenAÞ=N, and (4)
mean squared error (MSE), ð

PN
n¼1ðenÞ

2Þ=N , where N is the total number of options in a particular moneyness

category. BS denotes the Black and Scholes model, AHBS denotes the ad hoc Black and Scholes procedure that

fits to the implied volatility surface, GARCH denotes Heston and Nandi’s (2000) GARCH type discrete model,

VG denotes Madan et al.’s (1998) variance gamma model, and SV denotes Heston’s (1993) continuous-time

stochastic volatility model.



Table 7

Regression coefficients of independent variables for pricing errors

Coefficients BS AHBS GARCH VG SV

Panel A: One day ahead out-of-sample pricing errors

Calls

b0 1.7813

(0.0000)

7.0386

(0.0000)

2.0694

(0.0000)

1.7595

(0.0000)

1.6037

(0.0000)

b1 � 3.3442

(0.0000)

� 13.110

(0.0000)

� 4.3369

(0.0000)

� 3.2812

(0.0000)

� 3.0952

(0.0000)

b2 1.3467

(0.0000)

5.9329

(0.0000)

1.8923

(0.0000)

1.3768

(0.0000)

1.2835

(0.0000)

b3 0.0727

(0.3060)

0.5743

(0.0054)

0.3496

(0.0148)

0.1632

(0.0518)

� 0.0243

(0.7246)

b4 5.0604

(0.0000)

3.2280

(0.1168)

7.3356

(0.0000)

3.7985

(0.0000)

4.8736

(0.0000)

Adjusted R2 0.1399 0.0894 0.2669 0.0813 0.1158

F 180.39 109.29 250.28 98.019 142.22

Puts

b0 � 0.1010

(0.4433)

12.3519

(0.0000)

� 0.1623

(0.0125)

� 0.0762

(0.5614)

0.4893

(0.0089)

b1 � 0.4655

(0.0596)

� 25.8267

(0.0000)

� 1.8396

(0.0000)

� 0.4555

(0.0654)

� 1.5802

(0.0000)

b2 0.5387

(0.0000)

13.5852

(0.0000)

1.8463

(0.0000)

0.5027

(0.0000)

1.0442

(0.0000)

b3 � 0.1186

(0.0324)

1.0187

(0.0013)

0.3462

(0.0133)

� 0.1060

(0.0564)

0.1812

(0.0284)

b4 2.2892

(0.0000)

� 1.7138

(0.5607)

2.8843

(0.0000)

2.2688

(0.0000)

2.1419

(0.0033)

Adjusted R2 0.1951 0.1562 0.2434 0.1691 0.1012

F 276.12 211.16 321.29 230.45 126.522

Panel B: 1 week ahead out-of-sample pricing errors

Calls

b0 2.7392

(0.0000)

11.3948

(0.0000)

4.3589

(0.0000)

1.9862

(0.0000)

2.9133

(0.0000)

b1 � 4.5999

(0.0000)

� 22.0588

(0.0000)

� 7.2239

(0.0000)

� 3.0818

(0.0000)

� 5.0266

(0.0000)

b2 1.8040

(0.0000)

10.1403

(0.0000)

2.6475

(0.0000)

1.1216

(0.0000)

2.0025

(0.0000)

b3 � 0.2326

(0.0040)

0.6844

(0.0112)

� 0.6689

(0.0000)

� 0.1480

(0.0890)

� 0.5726

(0.0000)

b4 3.2917

(0.0000)

9.1242

(0.0007)

6.5294

(0.0000)

1.9581

(0.0174)

4.3747

(0.0000)

Adjusted R2 0.1889 0.1173 0.2239 0.1316 0.1746

F 256.47 146.73 296.03 164.84 221.15

Puts

b0 � 0.0532

(0.7683)

4.9358

(0.0000)

0.2921

(0.1762)

0.2239

(0.2441)

0.2368

(0.2316)

b1 � 0.6068

(0.0731)

� 11.0882

(0.0000)

� 1.6823

(0.0000)

� 1.2536

(0.0006)

� 1.3584

(0.0003)
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Table 7 (continued)

Coefficients BS AHBS GARCH VG SV

Panel B: 1 week ahead out-of-sample pricing errors

Puts

b2 0.7904

(0.0000)

6.7608

(0.0000)

1.4809

(0.0000)

1.1080

(0.0000)

1.1680

(0.0000)

b3 � 0.1428

(0.0608)

1.2465

(0.0000)

� 0.2326

(0.0156)

� 0.1572

(0.0418)

� 0.0678

(0.4437)

b4 0.5634

(0.4252)

� 7.2371

(0.0292)

1.9463

(0.0093)

1.3210

(0.0562)

1.7001

(0.0260)

Adjusted R2 0.2473 0.1317 0.2931 0.2528 0.2339

F 372.87 172.63 409.53 379.29 331.00

This table reports the results for regression on out-of-sample pricing errors. The regression below is based on the

equation

en:t ¼ b0 þ b1ðSt=KnÞ þ b2ðSt=KnÞ2 þ b3sn þ b4rt þ gnðtÞ

where en.t is the absolute percentage error of the option n on day t; St/Kn, sn and rt respectively represent the

moneyness, the time-to-maturity of the option contract and the risk-free interest rate at date t. The estimated

regression coefficients are presented in this table together with their p-values, which are shown in parenthesis.

Adjusted R2 values and F-statistics for the linear regression model are reported in the last two rows of the table.

BS denotes the Black and Scholes model, AHBS denotes the ad hoc Black and Scholes procedure that fits to the

implied volatility surface, GARCH denotes Heston and Nandi’s (2000) GARCH type discrete model, VG denotes

Madan et al.’s (1998) variance gamma model, and SV denotes Heston’s (1993) continuous-time stochastic

volatility model.
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underlying asset price volatility alone, and carry out a delta-neutral hedge, employing

only the underlying asset as the hedging instrument.

We implement hedging with the following method. Consider hedging a short position

in an option, O(t, s; K) with s periods to maturity and strike price of K. Let DS(t) be the

number of shares of the underlying asset to be purchased, and D0( =O(t, s; K)�DS(t)St) be

the residual cash positions. We consider the delta hedging strategy of DS =BO(t, s; K)/BSt)
and D0(t). The delta, for a put option, is negative, which means that a short position in put

options should be hedged with a short position in the underlying stock.

To examine the hedging performance, we use the following steps. First, on day t, we

short an option, and construct a hedging portfolio by buying DS(t) shares of the underlying

asset,8 and investing D0(t) in a risk-free bond. To compute DS(t), we use estimated

structural parameters from the previous trading day and the current day’s asset price.

Second, we liquidate the position after the next trading day or the next week. Then we

compute the hedging error as the difference between the value of the replicating portfolio

and the option price at the time of liquidation:

et ¼ DSStþDt þ D0e
rDt � Oðt þ Dt; s � Dt;KÞ: ð17Þ

Tables 8 and 9 present 1 day and 1 week hedging errors over alternative moneyness

categories, respectively. SV has the best hedging performance irrespective of the
8 In case of put options, some shares of the underlying asset are shorted because Ds(t) is negative.
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rebalancing period. Exceptionally, for 1 week ahead hedging errors of put options, BS

shows the best performance. But the difference among models is not so large. GARCH

shows similar results with other models contrary to the case of pricing. We recognize that

GARCH shows a weak point in pricing but a strong point in hedging, i.e. forecasting

volatilities. In each moneyness category, the hedging errors are highest for OTM options

and get smaller as we move to ITM options. This pattern is true for every model and for

each rebalancing frequency.

All models show positive mean hedging errors on average. This can be interpreted

with the negative risk premium associated with the volatility risk (Bakshi and

Kapadia, 2001). Purchased options are hedged against significant market declines.

The reason is that increased realized volatility coincides with downward market

moves. One economic interpretation is that buyers of market volatility are willing

to pay a premium for downside protection. In our hedging implementation, the

replicating portfolio holds a short position in volatility and the effect of change in

volatility is not taken into account. So, the replicating portfolio ( = delta-hedged

portfolio) has positive gains because of a negative risk premium of the volatility risk.
6. Conclusion

We have studied pricing and hedging performances of alternative stochastic

volatility option pricing models: Black and Scholes (1973) model, the ad hoc Black

and Scholes procedure that fits to the implied volatility surface, Heston and Nandi’s

(2000) GARCH type discrete model, Madan et al.’s (1998) variance gamma model

and Heston’s (1993) continuous-time stochastic volatility model. We estimate each

model from the daily cross-section of the KOSPI 200 index option prices. Our results

are as follows.

First, SV outperforms other models in terms of in-sample pricing, out-of-sample

pricing and hedging performances. Second, the addition of the stochastic volatility term

does not resolve the ‘‘volatility smiles’’ effects, but it reduces the effects. Third, BS is

competent in option pricing with the advantage of simplicity. This result reflects the

actuality that most market practitioners in the emerging markets still use BS. Finally,
Notes to Table 8:

This table reports 1 day ahead hedging error for the KOSPI 200 option with respect to moneyness. Only the

underlying asset is used as the hedging instrument. Parameters and spot volatility implied by all options of the

previous day are used to establish the current day’s hedge portfolio, which is then liquidated the following day.

For each option, its hedging error is the difference between the replicating portfolio value and its market price.

Denoting en hedging errors, hedging performance is evaluated by: (1) mean percentage error (MPE), ð
PN

n¼1 en=
OnÞ=N , (2) mean absolute percentage error (MAPE), ð

PN
n¼1 AenA=OnÞ=N , (3) mean absolute error (MAE),

ð
PN

n¼1 AenAÞ=N, and (4) mean squared error (MSE), ð
PN

n¼1ðenÞ
2Þ=N, where N is the total number of options in a

particular moneyness category. BS denotes the Black and Scholes model, AHBS denotes the ad hoc Black and

Scholes procedure that fits to the implied volatility surface, GARCH denotes Heston and Nandi’s (2000) GARCH

type discrete model, VG denotes Madan et al.’s (1998) variance gamma model, and SV denotes Heston’s (1993)

continuous-time stochastic volatility model.
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GARCH is the worst performer. In the emerging markets such as the Korean KOSPI 200

index options market with liquidity concentrated in deep OTM options, GARCH does

not perform appropriately.
Table 8

One day ahead hedging errors

S/K < 0.94 0.94–0.97 0.97–1.00 1.00–1.03 1.03–1.06 z 1.06 All

Panel A: Calls

MPE BS 0.1924 0.2627 0.1429 0.0765 0.0348 0.0049 0.1449

AHBS 0.1924 0.2652 0.1446 0.0773 0.0356 0.0044 0.1456

GARCH 0.2645 0.2259 0.1027 0.0583 0.0325 0.0148 0.1559

VG 0.1973 0.2672 0.1345 0.0700 0.0314 0.0052 0.1447

SV 0.1630 0.2516 0.1289 0.0730 0.0335 0.0040 0.1297

MAPE BS 0.4152 0.3713 0.2272 0.1390 0.0971 0.0612 0.2727

AHBS 0.4232 0.3740 0.2286 0.1397 0.0981 0.0615 0.2764

GARCH 0.4147 0.3730 0.2301 0.1477 0.0992 0.0620 0.2747

VG 0.4001 0.3749 0.2247 0.1394 0.0975 0.0606 0.2676

SV 0.3941 0.3628 0.2141 0.1372 0.0967 0.0612 0.2611

MAE BS 0.4634 0.6377 0.6299 0.5774 0.5728 0.5833 0.5561

AHBS 0.4701 0.6426 0.6336 0.5811 0.5791 0.5874 0.5614

GARCH 0.4644 0.6581 0.6576 0.6241 0.5899 0.4644 0.5729

VG 0.4467 0.6440 0.6263 0.5807 0.5764 0.5782 0.5511

SV 0.4367 0.6220 0.5904 0.5725 0.5717 0.5860 0.5380

MSE BS 0.6890 1.3525 1.2467 0.9390 0.6737 0.7940 0.9260

AHBS 0.6968 1.3618 1.2521 0.9448 0.6930 0.7967 0.9340

GARCH 0.6618 1.3569 1.2475 0.9885 0.7158 0.8016 0.9289

VG 0.6635 1.3746 1.2232 0.9366 0.6753 0.7973 0.9173

SV 0.6073 1.2730 1.0578 0.9209 0.6723 0.8077 0.8547

Panel B: Puts

MPE BS 0.0011 0.0310 0.0588 0.1347 0.2256 0.1707 0.1132

AHBS 0.0016 0.0314 0.0599 0.1375 0.2293 0.1696 0.1140

GARCH 0.0082 0.0186 0.0243 0.0950 0.2041 0.2164 0.1131

VG 0.0042 0.0326 0.0538 0.1180 0.2010 0.1645 0.1055

SV 0.0016 0.0266 0.0554 0.1264 0.2117 0.1569 0.1048

MAPE BS 0.0652 0.1005 0.1376 0.2358 0.3539 0.3202 0.2197

AHBS 0.0657 0.1005 0.1375 0.2364 0.3558 0.3294 0.2229

GARCH 0.0639 0.1043 0.1464 0.2473 0.3617 0.3467 0.2319

VG 0.0641 0.1007 0.1425 0.2428 0.3518 0.3100 0.2177

SV 0.0653 0.0973 0.1347 0.2328 0.3513 0.3107 0.2149

MAE BS 0.7003 0.5997 0.5546 0.5521 0.4744 0.3402 0.5063

AHBS 0.7039 0.5997 0.5547 0.5534 0.4760 0.3482 0.5097

GARCH 0.6748 0.6262 0.5952 0.5908 0.5024 0.3780 0.5323

VG 0.6827 0.5993 0.5742 0.5663 0.4820 0.3303 0.5067

SV 0.6982 0.5831 0.5447 0.5454 0.4684 0.3306 0.4984

MSE BS 0.9600 0.7854 0.6520 0.7861 0.5939 0.4442 0.6633

AHBS 0.9731 0.7896 0.6539 0.7882 0.5965 0.4512 0.6688

GARCH 0.9031 0.8359 0.7318 0.8454 0.6287 0.4809 0.6968

VG 0.9081 0.7960 0.6795 0.8037 0.5976 0.4276 0.6590

SV 0.9442 0.7210 0.6281 0.7752 0.5683 0.4292 0.6407
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Summarizing all findings, SV is found to be a recommended option pricing model.

Also, BS can be a competitive model in the emerging markets like the Korean KOSPI 200

index option market. Also, our results suggest possible avenues for future investigation.

The remaining and persistent pricing errors and hedging errors based on SV suggest that a
Table 9

One week ahead hedging errors

S/K < 0.94 0.94–0.97 0.97–1.00 1.00–1.03 1.03–1.06 z 1.06 All

Panel A: Calls

MPE BS � 0.0237 0.2892 0.2210 0.1484 0.0617 0.0013 0.0960

AHBS � 0.0032 0.3076 0.2325 0.1551 0.0659 0.0017 0.1091

GARCH 0.1422 0.1455 0.1106 0.0850 0.0394 0.0183 0.1062

VG 0.0132 0.2660 0.2031 0.1332 0.0481 � 0.0028 0.0990

SV � 0.0683 0.2745 0.2157 0.1486 0.0607 � 0.0054 0.0775

MAPE BS 0.8632 0.5129 0.3190 0.2046 0.1351 0.0927 0.4814

AHBS 0.8760 0.5252 0.3255 0.2078 0.1339 0.0931 0.4891

GARCH 0.8838 0.5239 0.3191 0.2174 0.1563 0.1019 0.4949

VG 0.8509 0.5306 0.3198 0.2038 0.1370 0.0897 0.4796

SV 0.8570 0.5083 0.3177 0.2053 0.1349 0.0892 0.4759

MAE BS 0.9011 0.8887 0.8560 0.8579 0.8165 0.9063 0.8803

AHBS 0.9197 0.9087 0.8708 0.8694 0.8069 0.9091 0.8933

GARCH 0.9511 0.9729 0.9149 0.9432 0.9695 0.9863 0.9541

VG 0.9010 0.9281 0.8623 0.8621 0.8399 0.8882 0.8877

SV 0.9002 0.8923 0.8534 0.8567 0.8170 0.8811 0.8766

MSE BS 1.8109 1.5546 1.3508 1.3062 1.1976 1.6873 1.5684

AHBS 1.8341 1.5868 1.3875 1.3474 1.1354 1.6636 1.5841

GARCH 1.9717 1.7930 1.5503 1.5597 1.8224 1.9623 1.8131

VG 1.8203 1.6599 1.3568 1.3029 1.2650 1.5354 1.5753

SV 1.8027 1.5370 1.3087 1.3069 1.1956 1.4169 1.5198

Panel B: Puts

MPE BS � 0.0326 0.0491 0.1179 0.2168 0.3145 0.2345 0.1527

AHBS � 0.0312 0.0514 0.1255 0.2262 0.3280 0.2399 0.1588

GARCH � 0.0394 � 0.0117 0.0130 0.0760 0.1638 0.3273 0.1145

VG � 0.0310 0.0458 0.1030 0.1859 0.2528 0.2210 0.1340

SV � 0.0359 0.0470 0.1163 0.2103 0.2900 0.2182 0.1425

MAPE BS 0.1172 0.1637 0.2206 0.3480 0.5503 0.6274 0.3663

AHBS 0.1176 0.1644 0.2214 0.3458 0.5527 0.6499 0.3728

GARCH 0.1197 0.1728 0.2273 0.3637 0.5664 0.6336 0.3749

VG 0.1174 0.1709 0.2264 0.3547 0.5716 0.6271 0.3710

SV 0.1189 0.1640 0.2230 0.3488 0.5489 0.6098 0.3609

MAE BS 1.3115 0.9688 0.8687 0.8504 0.8094 0.6309 0.8885

AHBS 1.3138 0.9726 0.8691 0.8417 0.8083 0.6482 0.8928

GARCH 1.2992 1.0494 0.9222 0.9262 0.8660 0.6549 0.9287

VG 1.3023 1.0114 0.8913 0.8635 0.8253 0.6307 0.9001

SV 1.3338 0.9693 0.8810 0.8502 0.8048 0.6137 0.8902

MSE BS 3.4001 1.5722 1.3189 1.3674 1.2784 0.8106 1.6004

AHBS 3.3760 1.5780 1.3182 1.3557 1.2711 0.8328 1.6001

GARCH 3.7834 1.9992 1.4874 1.5479 1.4926 0.8880 1.8248

VG 3.4187 1.7246 1.3669 1.3965 1.3045 0.8265 1.6445

SV 3.5695 1.5894 1.3339 1.3314 1.2588 0.7766 1.6226
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jump component may further improve performances.9 One reason is that in emerging

markets a jump risk is probably more severe than in developed markets. Therefore

modeling a jump risk in option pricing may be more relevant for emerging markets.
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Appendix A

The purpose of this appendix is to display the risk neutral probability of each model.

(1) GARCH

P1 ¼
1

2
þ 1

p

Z l

0

Re
e�i/ln½K�f ð/ � iÞ

i/

� �
d/;

P2 ¼
1

2
þ 1

p

Z l

0

Re
e�i/ln½K�f ð/Þ

i/

� �
d/;

where f(/) = exp(A(t; T, /) +B(t; T, /)h(t+ 1) + i/ln[St]); A(t; s, /) and B(t; s,/) are

computed recursively as

Aðt; s;/Þ ¼ Aðt þ 1; s � 1;/Þ þ i/r þ Bðt þ 1; s � 1;/Þ

� 1

2
ln½1� 2aBðt þ 1; s � 1;/Þ�;
9 Bakshi et al. (1997) also mentioned, ‘‘The fact that such jumps and crashes are allowed to be discontinuous

over time makes these models more flexible than the diffusion–stochastic–volatility model, in internalizing the

desired return distributions, especially at short time horizons.’’

Notes to Table 9:

This table reports 1 week ahead hedging error for the KOSPI 200 option with respect to moneyness. Only the

underlying asset is used as the hedging instrument. Parameters and spot volatility implied by all options of the

previous day are used to establish the current day’s hedge portfolio, which is then liquidated the next week. For

each option, its hedging error is the difference between the replicating portfolio value and its market price.

Denoting en hedging errors, hedging performance is evaluated by: (1) mean percentage error (MPE), ð
PN

n¼1 en=
OnÞ=N , (2) mean absolute percentage error (MAPE), ð

PN
n¼1 AenA=OnÞ=N , (3) mean absolute error (MAE),

ð
PN

n¼1 AenAÞ=N, (4) and mean squared error (MSE), ð
PN

n¼1ðenÞ
2Þ=N, where N is the total number of options in a

particular moneyness category. BS denotes the Black and Scholes model, AHBS denotes the ad hoc Black and

Scholes procedure that fits to the implied volatility surface, GARCH denotes Heston and Nandi’s (2000) GARCH

type discrete model, VG denotes Madan et al.’s (1998) variance gamma model, and SV denotes Heston’s (1993)

continuous-time stochastic volatility model.
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Bðt; s;/Þ ¼ i/ c � 1

2

� �
� 1

2
c2 þ bBðt þ 1; s � 1;/Þ

þ ði/ � cÞ2=2
1� 2abðt þ 1; s � 1;/Þ ; 9

with terminal conditions (A(T; 0, /) +B(T; 0, /) = 0.
(2) VG

P1 ¼ u d

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c1

m

r
; ða þ rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
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1� c1
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;
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" #
;
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m

" #
;
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d ¼ 1

r
ln

St

K

� �
þ rs þ s

m
ln

1� c1

1� c2

� �� �
;

c1 ¼
mða þ rÞ2

2
; c2 ¼

ma2

2
;

uða; b; cÞ ¼
Z l

0

U
affiffiffi
g

p þ b
ffiffiffi
g

p
� �

gc�1e�g

CðcÞ dg:

U(�) is the cumulative distribution function of the standard normal distribution, and C(�)
is the gamma function.

(3) SV

Pj ¼
1

2
þ 1

p

Z l

0

Re
e�i/ln½K�fjðx; mt; s;/Þ

i/

� �
d/ ðj ¼ 1; 2Þ

where

fjðx; m; s;/Þ ¼ exp½Cðs;/Þ þ Dðs;/Þmt þ i/x�;

Cðs;/Þ ¼ r/is þ a

r2
ðbj � qr/iþ dÞs � 2ln

1� geds

1� g

� �� �
;
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Dðs;/Þ ¼ bj � qr/iþ d

r2

1� eds

1� geds

� �
;

g ¼ bj � qr/iþ d

bj � qr/i� d
; d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqr/i� bjÞ2 � r2ð2lj/i� /2Þ

q
;

a ¼ jh; b1 ¼ j � qr; b2 ¼ j; l1 ¼ 1=2; l2 ¼ �1=2:
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