
IS IT IMPORTANT TO

CONSIDER THE JUMP

COMPONENT FOR

PRICING AND HEDGING

SHORT-TERM OPTIONS?

IN JOON KIM
SOL KIM*

The usefulness of the jump component for pricing and hedging short-term
options is studied for the KOSPI (Korean Composite Stock Price Index)
200 Index options. It is found that jumps have only a marginal effect and
stochastic volatility is of the most importance. There is evidence of jumps
in the underlying index but no evidence of jumps in the corresponding
index options. However, these results may not be valid for individual equity
options. © 2005 Wiley Periodicals, Inc. Jrl Fut Mark 25:989–1009, 2005

The authors thank Jangkoo Kang, Byungwook Choi, and Yooncho Annie Lee for helpful comments
and suggestions. Robert I. Webb (the editor) and an anonymous referee have provided detailed
comments that have substantially improved the article. Any remaining errors are the authors’
responsibility.
*Correspondence author, SAMSUNG SDS, 707-19, Yoksam-2Dong, Gangnam-Gu, Seoul, Korea;
e-mail: sol.kim@kaist.ac.kr

Received March 2004; Accepted March 2005

� In Joon Kim is a Professor in the Graduate School of Management at the Korea
Advanced Institute of Science and Technology.

� Sol Kim is a Senior Consultant in the Consulting Division of the SAMSUNG SDS Co.
Ltd. in Seoul, Korea.

The Journal of Futures Markets, Vol. 25, No. 10, 989–1009 (2005) © 2005 Wiley Periodicals, Inc.
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fut.20175



990 Kim and Kim

1See, for example, Jorion (1988), Kim, Oh, and Brooks (1994), Eraker, Johannes, and Polson
(2000).
2Several studies have noted that the incorporation of a jump component is essential when pricing
options that are close to maturity. Bakshi, Cao, and Chen (1997) find the significance of jumps for
pricing short-term options. Also, a number of other articles illustrate the importance of jumps for
pricing and hedging options—see Ball and Torous (1985), Jorion (1988), Naik and Lee (1990), Naik
(1993), and Das and Sundaram (1999).

INTRODUCTION

It has long been asserted that jumps or stochastic volatility may provide
additional flexibility in capturing the salient features of equity returns,
including skewness and leptokurtosis.1 In a recent study, Andersen,
Benzoni, and Lund (2002) show that discrete jump component and sto-
chastic volatility with a negative correlation between asset return and
volatility are significant in the S&P 500 market. In studies of the S&P
500 options market, Bakshi, Cao, and Chen (1997) find it important to
incorporate stochastic volatility for pricing and preserving internal con-
sistency. It is found that the stochastic volatility is the most important
factor, and jumps show only marginal effects; these results differ from
those of the underlying index market. Furthermore, Bakshi, Cao, and
Chen (2000) find that it is of first-order importance even for the long-
term option such as LEAPS (long-term equity anticipation securities) to
take stochastic volatility into consideration. In short, the stochastic
volatility is the most significant factor regardless of the maturity of the
options.

If so, one may wonder whether it is completely unnecessary to con-
sider jumps for pricing and hedging options. It is a common understand-
ing in the literature that jumps are important for pricing and hedging
short-term options.2 Moreover, if volatility follows a pure diffusion, the
implied path of continuous sample may be incapable of generating a suf-
ficiently volatile return distribution over short horizons to justify the
observed prices of derivatives instruments.

The objective of this article is to examine the importance of the
jump component for pricing and hedging short-term options. Previous
studies have tested the usefulness of jumps in the options market;
however, these have not separated the cases where only jumps them-
selves exist from those cases where jumps are additionally added to sto-
chastic volatility. For instance, Merton (1976), Bates (1991), and Jorion
(1988) have tested the absolute effect of jumps by comparing the jump-
diffusion option pricing model (henceforth the J model) to the Black and
Scholes (1973) model (henceforth the BS model). Also, Bakshi et al.
(1997) have examined the marginal effect of the J model by comparing
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3During the 5-year period from 1999 to 2003, in terms of trading volume, the KOSPI 200 options
market has ranked first in the world. The Asian Risk magazine named the KOSPI 200 index options
market as the derivatives market of the year 2001.

the stochastic-volatility model (henceforth the SV model) and stochastic-
volatility jump-diffusion model (henceforth the SVJ model). This article
examines both the absolute and marginal effects of the jump component,
which is well known to play an important role for the short-term options.
The subject of study is the Korean Composite Stock Price Index (hence-
forth KOSPI) 200 options market, the largest options market in the
world despite its short history.3 Focusing on this market will also be useful,
because there is an excellent liquidity in the near contract. In the Korean
stock index market, jumps and stochastic volatility are found under
physical measure. Chang (1997) and Kim and Chang (1996) test the
existence of jump component by using the model to admit both the tran-
sient jump and the conditional volatility of KOSPI 200 and KOSPI,
respectively. They find that after taking the heteroscedasticity effect into
account, there still exist significant jump components in well-diversified
portfolios such as KOSPI 200 and KOSPI. Chang (2003) estimates the
continuous-time stochastic-volatility diffusion model by using the EMM
of Gallant and Tauchen (1997) and finds that the stochastic-volatility
component is a significant factor in the KOSPI market. Similar to cases
in the S&P 500 index market, stochastic volatility and jumps are impor-
tant factors for describing the underlying index. This study assesses the
usefulness of the jump component for pricing and hedging short-term
options.

The J model of Bates (1991) is compared with the SV and the SVJ
models of Bakshi et al. (1997) from three perspectives: in-sample pric-
ing, out-of-sample pricing, and hedging performances. If the SVJ model
turns out to be the best, and the J model the worst, and the differences
between the SV and the SVJ models not much, it will imply that the
jump component has only marginal effects even for short-term options.
In contrast, if the SVJ model is the best, the SV model the worst, and the
difference between the SVJ and the J models not much, the jump com-
ponent will be the most important factor for short-term options in an
absolute sense.

The outline of this article is as follows. Alternative models are
reviewed in the following section and the Estimation Procedure section
describes the estimation method. Next, the data used for the analysis are
described, and the Empirical Findings section describes the pricing and
hedging performance of each model. Finally, the results are summarized.
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MODELS

SVJ Model

Bakshi et al. (1997) derived a closed-form option pricing model that incor-
porates stochastic volatility and random jumps. Under the risk-neutral
measure, the underlying nondividend-paying stock price S(t) and its com-
ponents for any time t are given by the following:

(1)

(2)

(3)

where R(t) is the instantaneous spot interest rate at time t, l is the fre-
quency of jumps per year, and V(t) is the diffusion component of return
variance (conditional on no jump occurring). ZS(t) and Zn(t) are standard
Brownian motions, with Covt[dZS(t), dZn(t)] � r dt. J(t) is the percentage
jump size (conditional on a jump occurring) that is lognormally, identi-
cally, and independently distributed over time, with unconditional mean
of mJ. sJ is the standard deviation of ln[1 � J(t)]. q(t) is a Poisson jump
counter with intensity l; that is, Pr[dq(t) � 1] � l dt and Pr[dq(t) � 0] �
1 � l dt. kn, un /kn, and sn are the speed of adjustment, long-run mean,
and variation coefficient of the diffusion volatility V(t), respectively. q(t)
and J(t) are uncorrelated with each other or with ZS(t) and Zn(t).

For a European call option with strike price K and time to maturity
t, the closed form formula for price C(t, t) at time t is as follows:

C(t, t) � S(t)P1(t, t; S, R, V) � Ke�RtP2(t, t; S, R, V) (4)

where the risk-neutral probabilities P1 and P2 are computed from invert-
ing the respective characteristic functions of the following:

(5)

The characteristic functions, fj’s, are given in Equations (A-1) and (A-2)
of the Appendix. The price of a European put on the same stock can be
determined from the put–call parity. The option valuation model in
Equation (5) contains the most existing models as special cases. For exam-
ple, (i) the BS model is obtained by setting l � 0 and un � kn � sn � 0;

�
1
2

�
1
p �

�

0

Re c exp(�if ln K)fj(t, t, S(t), V(t); f)

if
d�( j � 1, 2)

Pj(t, t; S(t), V(t))

ln[1 � J(t)] ~ N(ln[1 � mJ] � 1�2sJ
2, sJ

2)

dV(t) � [un � Kn V(t)]dt � sn2V(t) dZn(t)

dS(t)
S(t)

� [R(t) � lmJ]dt � 2V(t) dZS(t) � J(t) dq(t)



Pricing and Hedging Short-Term Options 993

and (ii) the SV model is obtained by setting l � 0, where one may need
to apply L’Hopital’s rule to derive each special case from Equation (5).
Also the constant-volatility jump-diffusion model of Bates (1991) is an
embedded version of the SVJ model.

J Model

The specification used in Bates (1991) is now examined. The underlying
asset with (possibly) asymmetric random jumps is described in Equation (1).
The postulated process differs from the process in Merton (1976) and
Ball and Torous (1983, 1985) in several significant aspects. First, jumps
are allowed to be asymmetric, possibly with nonzero mean. For instance,
values of the expected percentage jump size k greater (less) than zero
imply that the distribution is positively (negatively) skewed relative to
geometric Brownian motion. In addition, the jump risk is systematic and
nondiversifiable.

As shown in the following formula, European call options are
priced as the discounted expected value of their terminal payoffs, assum-
ing that the terminal distribution is determined under the risk-neutral
world:

(6)

where 

and 

ESTIMATION PROCEDURE

In implementing option pricing models, one always encounters the diffi-
culty that the spot volatility and the structural parameters are unobserv-
able. Because closed-form solutions are available for an option valuation,
a natural candidate for the estimation of parameters in the pricing and

d2n � d1n � 2V(t)t � nsJ
2.

d1n �
[ln(S(t)�K) � b(n)t � 1

2(V(t)t � nsJ
2)]

2V(t)t � nsJ
2

,

b(n) � (r � l*m*J ) � n(ln mJ � 1)�t,

� e�rt
a

�

n�0
 ce�l*t(l* t)n�n!d [S(t)eb(n)tN(d1n)� KN(d2n)]

C(t, t; S(t)) � e�rt
a
�

n�0 
Pr*(n jumps)E*t [max(S(t) � K, 0) 0 n jumps]
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4If both call and put option prices are used, in-the-money calls and out-of-the-money puts that are
equivalent according to the put–call parity are used to estimate the parameters.

hedging formula is a nonlinear least-squares procedure, involving a min-
imization of the sum of squared errors between the model and the mar-
ket prices. As in Bakshi et al. (1997) and Bates (1995, 1996), the struc-
tural parameters are estimated together with the spot volatility of each
model in the sample. Estimating parameters from the asset returns can
be an alternative method, but historical data reflect only what has hap-
pened in the past. Furthermore, the procedure using historical data is
not capable of identifying risk premiums, which must be estimated from
the options data conditional on the estimates of other parameters. The
important advantage of using option prices to estimate parameters is to
allow one to use the forward-looking information contained in the option
prices.

Let denote the model price of option i on day t and
Oi(t, t; K) denote the market price of option i on day t. The parameters
for calls and puts, respectively, are estimated.4 That is, there are two sets
of parameters for calls and puts day after day. To estimate parameters for
each model, the sum of squared percentage errors between the model
and the market prices are minimized as

(7)

where N denotes the number of options on day t, and T denotes the
number of days in the sample. Conventionally, the objective function is
used to minimize the sum of squared errors. However, the above func-
tion is adopted because the conventional method that gives more weight
to relatively expensive in-the-money options makes a worse fit for out-of-
the-money options.

DATA

Introduced in July 7 1997, the KOSPI 200 options are based on the
KOSPI 200 index, consisting 200 constituent blue-chip stocks by Korea
Stock Exchange (KSE). The KOSPI 200 options market started with an
unprecedented enthusiasm. During the five years from 1999 to 2003, in
terms of trading volume, the KSE options market was the most active
options market in the world, with its annual trading volume reaching
1890 million contracts in 2002. Moreover, it is important to note that
liquidity is concentrated in the nearest expiration contract. In other

min
f t
a
N

i�1
cO*i (t, t; K) � Oi(t, t; K)

Oi(t, t; K)
d 2   (t � 1, . . . , T)

O*i (t, t; K)
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5The sample includes the period of the 9/11 terrorism in 2001, and this shock may influence the
results of the article differently. To validate this conjecture, when the period of the 9/11 terrorism
was excluded from the sample, there was no change in the result.
6Because the Treasury-bill market in Korea is not liquid, the 91-day certificate-of-deposit (CD)
yields are used for risk-free rates, in spite of the mismatch of maturity dates of options and interest
rates.
7It is assumed that traders have perfect knowledge about future dividend payments because options
in this study have short times to maturities.
8In the Korean stock market, there are simultaneous bids and offers from 2:50 p.m.
9Because the recorded KOPSI 200 index values are not equivalent to the daily closing index levels,
there is no nonsynchronous price issue here, except that the KOSPI 200 index level itself may con-
tain stale component stock prices at each point in time.

words, a tremendous trading volume is converged into one or two expira-
tion contracts. Hence, it is ideal for the investigation of short-term
options.

The sample period is from January 5, 2000 to July 31, 2002.5

Minute-by-minute transaction prices for the KOSPI 200 options are
obtained from the Korea Stock Exchange. The 91-day certificate-of-
deposit (CD) yields are used as risk-free interest rates.6 Because KOSPI
200 contracts are European style, index levels are adjusted for dividend
payments before each option’s expiration date. The KOSPI 200 index
pays dividends quarterly at the end of March, June, September, and
December, and these dates are used for adjustment dates.7 The following
rules are applied to filter the data needed for the empirical test.

1. Each day, only the last reported transaction price prior to 2:50 p.m.,8

of each option contract is employed in the empirical test.9

2. As options with less than 6 days or more than 60 days to expiration may
induce liquidity-related biases, they are excluded from the sample.

3. To mitigate the impact of price discreteness in option valuation,
prices lower than 0.2 are eliminated.

4. Prices not satisfying option boundary conditions are excluded:

where Bt,t is a zero-coupon bond that pays 1 in t periods from time t, Dt

is daily dividend at time t, and rt,s is the risk-free interest rate with matu-
rity s at time t.

Option data are divided into several categories according to the
moneyness S�K. Table I describes sample properties. Note that there are

Pt,t � KBt,t � St � a
s�1

e�rt,s sDt�s

Ct,t � St � a
t

s�1
e�rt,ss Dt�s � KBt,t
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TABLE I

KOSPI 200 Options Data

S�K Calls Puts

�0.94 0.97 (4067) 12.83 (2885)
0.94–0.97 2.19 (1106) 6.04 (970)
0.97–1.00 3.11 (1021) 4.33 (975)
1.00–1.03 4.33 (941) 3.03 (986)
1.03–1.06 5.81 (808) 2.07 (945)
�1.06 12.20 (1870) 0.87 (3628)

Subtotal 4.19 (9813) 5.31 (10389)

Note. This table reports average option price and the number of options, which are shown in parentheses, in
terms of moneyness and type (call or put). The sample period is from January 5, 2000 to July 31, 2002. Daily
information from the last transaction prices (prior to 2:50 p.m.) of each option contract is used to obtain the sum-
mary statistics. Moneyness of an option is defined as S�K, where S denotes the spot price and K denotes the
strike price.

9,813 calls and 10,389 puts observed, with deep out-of-the-money
options taking up to 41% of calls and 35% of puts. However, to remove
such trading days that consist of the number of calls or puts less than
eight, which is the number of parameters in the SVJ model, 6 and 3 days
are excluded for calls and puts, respectively. Average numbers of daily
options are 15.71 and 16.58, with minimums of 8 (and 8) and maxi-
mums of 33 (and 31) for call (and put) options, respectively. Table II
presents the “volatility smile” effects for five consecutive subperiods. Six

TABLE II

Implied Volatility

S�K �0.94 0.94–0.97 0.97–1.00 1.00–1.03 1.03–1.06 �1.06

January 2000– Calls 0.43 0.41 0.41 0.41 0.41 0.48
June 2000 Puts 0.58 0.42 0.42 0.42 0.42 0.46

July 2000– Calls 0.51 0.48 0.47 0.47 0.47 0.50
December 2000 Puts 0.68 0.51 0.52 0.51 0.52 0.52

January 2001– Calls 0.38 0.37 0.36 0.36 0.36 0.41
June 2001 Puts 0.42 0.39 0.38 0.38 0.38 0.41

July 2001– Calls 0.34 0.31 0.30 0.29 0.28 0.40
December 2001 Puts 0.50 0.39 0.37 0.36 0.35 0.40

January 2002– Calls 0.37 0.36 0.36 0.35 0.36 0.43
July 2002 Puts 0.43 0.39 0.38 0.37 0.37 0.39

Note. This table reports the implied volatilities calculated by inverting the Black-Scholes model separately for each
moneyness category. The implied volatilities of individual options are then averaged within each moneyness category
and across the days in the sample. Moneyness is defined as S�K, where S denotes the spot price and K denotes the
strike price.



Pricing and Hedging Short-Term Options 997

fixed intervals are employed for the degree of moneyness, and the mean
of the implied volatility is computed over alternative subperiods. The
Korean options market seems to be “smiling” or “sneering,” independent
of the subperiods employed in the estimation.

EMPIRICAL FINDINGS

In this section, empirical performances of each model are compared
with respect to three metrics: (a) in-sample pricing performance, (b) out-
of-sample pricing performance, and (c) hedging performance. The analy-
sis is based on two measures: mean absolute errors (henceforth MAEs)
and mean squared errors (henceforth MSEs). MAEs measure the magni-
tude of pricing errors, and MSEs measure the volatility of errors.

Estimated Parameters

Table III reports the daily averages and standard errors of daily spot
volatility and relevant structural parameters. As shown in the table, those

TABLE III

Parameters

Calls Puts

Parameters BS J SV SVJ BS J SV SVJ

l 0.9084 1.2450 1.1627 1.4556
(0.0664) (0.0560) (0.0722) (0.0586)

mJ �0.0517 �0.0749 �0.0508 �0.0678
(0.0082) (0.0098) (0.0112) (0.0139)

sJ 0.2869 0.1473 0.3281 0.1076
(0.0124) (0.0048) (0.0136) (0.0040)

kn 6.8196 4.2780 7.2121 3.5853
(0.2529) (0.1910) (0.2363) (0.1505)

un 0.7493 0.1117 0.7475 0.1449
(0.0344) (0.0047) (0.0364) (0.0059)

sn 1.0078 0.6297 1.0493 0.6405
(0.0422) (0.0244) (0.0480) (0.0244)

r �0.1115 �0.2235 �0.1325 �0.2443
(0.0185) (0.0163) (0.0179) (0.0196)

V(t ) 0.1803 0.3420 0.1775 0.1899 0.1849 0.3498 0.1805 0.1886
(0.0025) (0.0031) (0.0037) (0.0049) (0.0037) (0.0030) (0.0042) (0.0053)

Note. This table reports the structural parameters and the spot volatility of a given model, which are estimated by mini-
mizing the sum of squared percentage pricing errors between the market price and the model price for each option. The daily
average of the estimated parameters is reported first, followed by its standard error in parentheses. BS denotes the Black
and Scholes (1973) model, and J denotes the Bates (1991) jump-diffusion model. SV and SVJ denote the Bakshi et al.
(1997) stochastic-volatility model and stochastic-volatility jump-diffusion model, respectively.
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estimated from calls and puts within each model are not much differ-
ent. On the other hand, the parameters show large difference depend-
ing on the models. For instance, the frequency of the jump per year, l,
is larger for the SVJ model compared to that of the J model. Also, the
standard deviation of the jump size, d, is larger for the J model. For
the stochastic-volatility model, both the speed of adjustment, kn, and
long-run mean, un�kn, are larger for the SV model, compared to those
for the SVJ model. The implied correlations of both models have neg-
ative values. The negative estimates indicate that the implied volatility
and the index returns are negatively correlated and the implied distri-
bution perceived by option traders is negatively skewed. Implied
volatilities differ only by 15–20% per model, except for that of the
J model, which has a value twice the others. Thus, implied volatilities
show stability when compared to the structural parameters. However,
note that the option prices and hedge ratios are extremely sensitive to
the volatility input. In other words, even very minimal change in the
volatility leads to substantially different results for pricing and hedging
options.

In-Sample Pricing Performance

The in-sample pricing performance of each model is analyzed by
comparing market prices with model prices computed by using the
parameter estimates from the current day. Table IV reports in-sample
valuation errors for the alternative models computed for all the
options in the sample. First, with respect to all measures, the SVJ
model shows the best performance, closely followed by the SV model.
This is rather an obvious result when the use of larger number of
parameters in the SVJ model is considered. Second, all the models
show moneyness-based valuation errors. The models exhibit the worst
fit for the out-of-the-money options. The fit, measured by MAEs, steadi-
ly improves as we move from out-of-the-money to in-the-money options.
Overall, the SVJ model shows the best performance for in-sample
pricing.

Now the SV and the SVJ models, the two best-performing models
for in-sample pricing, are compared from a different perspective. The
approach of Bates (1996, 2000) and Bakshi et al. (1997) is used, and a
determination is made of whether each model’s implied parameters are
consistent with those implicit in the time series of the KOSPI 200
returns and the implied volatility. That is whether or not the daily averages
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TABLE IV

In-Sample Pricing Errors

S�K �0.94 0.94–0.97 0.97–1.00 1.00–1.03 1.03–1.06 �1.06 All

Panel A: Calls

MAE BS 0.16 0.22 0.26 0.31 0.34 0.31 0.24
J 0.09 0.15 0.20 0.25 0.28 0.33 0.18

SV 0.05 0.07 0.08 0.11 0.17 0.28 0.11
SVJ 0.05 0.06 0.08 0.10 0.16 0.26 0.11

MSE BS 0.04 0.07 0.08 0.08 0.14 0.74 0.19
J 0.03 0.06 0.09 0.14 0.19 0.78 0.21

SV 0.02 0.03 0.04 0.04 0.11 0.72 0.17
SVJ 0.02 0.03 0.03 0.04 0.09 0.68 0.16

Panel B: Puts

MAE BS 0.40 0.32 0.26 0.21 0.18 0.15 0.26
J 0.29 0.22 0.15 0.15 0.10 0.05 0.16

SV 0.27 0.18 0.11 0.10 0.07 0.03 0.13
SVJ 0.26 0.16 0.09 0.10 0.07 0.03 0.12

MSE BS 0.34 0.16 0.06 0.11 0.05 0.04 0.15
J 0.28 0.18 0.05 0.11 0.04 0.01 0.12 

SV 0.26 0.13 0.03 0.09 0.02 0.01 0.10
SVJ 0.26 0.12 0.03 0.08 0.02 0.01 0.10

Note. This table reports in-sample pricing errors for the KOSPI 200 option with respect to moneyness. S�K
is defined as moneyness, where S denotes the asset price and K denotes the strike price. Each model is
estimated daily during the sample period and in-sample pricing errors are computed using estimated parame-
ters from the current day. MAE denotes mean absolute errors and MSE denotes mean-squared errors. BS
denotes the Black and Scholes (1973) model, and J denotes the Bates (1991) jump-diffusion model. SV and
SVJ denote the Bakshi et al. (1997) stochastic-volatility model and stochastic-volatility jump-diffusion model,
respectively.

of the implied parameters are similar in magnitude to those from
the time-series counterparts is tested. Table V reports daily average of
the implied parameter values from option prices and the maximum-
likelihood (henceforth ML) estimates from the time series of the under-
lying asset. As is clearly shown in the table, the ML estimates of the
parameters are different from their respective option-implied counter-
parts. Although it is not specifically stated here, the p values for the null
hypothesis of equality between the ML estimates and the option implied
parameters are not all in excess of 0.01%. The two models are misspeci-
fied and this is consistent with findings in Bates (1991) and Bakshi et al.
(1997). Moreover, if the two models are compared, the option implied
parameters of the SVJ model are more similar in order of magnitude
to the ML estimates compared to SV model, except for the correlation
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10The differences between the option-implied correlation and the time-series correlation are smaller
for the SV model than for the SVJ model.

coefficient.10 Thus, it may be concluded that the SVJ model, which
shows the best performance for in-sample pricing is less misspecified
than the SV model. 

Out-of-Sample Pricing Performance

In-sample pricing performance can be biased because of the potential
problem of overfitting to the data. In other words, a good in-sample fit
might be a consequence of having a larger number of structural parame-
ters. In the out-of-sample test, the presence of more parameters may
actually cause overfitting and the model may suffer if the extra parame-
ters do not improve its structural fitting. Out-of-sample pricing errors for
the following day (week) are analyzed, with the use of the current day’s
estimated structural parameters and the spot volatility to price options
for the following day (week).

Tables VI and VII, respectively, report 1-day- and 1-week-ahead out-
of-sample valuation errors for alternative models computed over all the
options in the sample. The SVJ model shows the best performance irre-
spective of measures and terms of out-of-sample pricing. With respect to
moneyness-based errors, MAEs steadily decrease as one moves from
deep out-of-the-money to in-the-money options for all the models.
Generally, the SVJ model outperforms all the other models.

Second, pricing errors deteriorate as one moves from in-sample to
out-of-sample pricing. The average of MAEs of all the models is 0.16 for
the in-sample pricing, and grows to 0.23 for 1-day-ahead out-of-sample
pricing. This difference is not much compared to 1-week-ahead out-of-
sample pricing. One-week-ahead out-of-sample pricing errors grow to
0.31, almost twice as much as in-sample pricing errors. Although the SVJ
model continues to outperform other models for out-of-sample pricing,
the relative margin of performance is significantly less when compared to
that of in-sample pricing case. The difference between errors of the BS
and the SVJ models becomes smaller in the out-of-sample pricing. The
ratio of the BS model to the SVJ model for MAEs is 2.18 for in-sample
pricing errors. This ratio decreases to 1.30 and to 1.15 for 1-day-ahead
and 1-week-ahead out-of-sample errors, respectively. In short, as the term
of the out-of-sample pricing gets longer, the difference between errors of
the two models becomes smaller. Also, the robust pricing performance of
the SVJ model is not maintained as the term of out-of-sample pricing
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TABLE VI

One-Day-Ahead Out-of-Sample Pricing Errors

S�K �0.94 0.94–0.97 0.97–1.00 1.00–1.03 1.03–1.06 �1.06 All

Panel A: Calls

MAE BS 0.19 0.26 0.30 0.34 0.36 0.32 0.27 
J 0.14 0.23 0.27 0.30 0.33 0.36 0.24 

SV 0.13 0.20 0.22 0.24 0.27 0.32 0.20 
SVJ 0.13 0.19 0.21 0.23 0.27 0.32 0.20 

MSE BS 0.07 0.13 0.13 0.13 0.20 0.73 0.23 
J 0.06 0.14 0.15 0.18 0.25 0.76 0.24 

SV 0.06 0.13 0.11 0.12 0.20 0.76 0.22 
SVJ 0.05 0.12 0.11 0.12 0.20 0.76 0.22 

Panel B: Puts

MAE BS 0.42 0.35 0.30 0.25 0.21 0.17 0.28 
J 0.36 0.31 0.25 0.23 0.19 0.10 0.23 

SV 0.36 0.30 0.25 0.23 0.18 0.10 0.22 
SVJ 0.35 0.29 0.25 0.22 0.18 0.10 0.22 

MSE BS 0.42 0.33 0.18 0.18 0.11 0.06 0.21 
J 0.42 0.32 0.17 0.17 0.11 0.06 0.20 

SV 0.40 0.28 0.16 0.16 0.10 0.05 0.19 
SVJ 0.36 0.25 0.14 0.16 0.09 0.05 0.18 

Note. This table reports 1-day-ahead out-of-sample pricing errors for the KOSPI 200 option with respect to
moneyness. S�K is defined as moneyness, where S denotes the asset price and K denotes the strike price.
Each model is estimated every day during the sample period, and 1-day-ahead out-of-sample pricing errors are
computed with estimated parameters from the previous trading day. MAE denotes mean absolute errors and
MSE denotes mean-squared errors. BS denotes the Black and Scholes (1973) model, and J denotes the Bates
(1991) jump-diffusion model. SV and SVJ denote the Bakshi, et al. (1997) stochastic-volatility model and
stochastic-volatility jump-diffusion model, respectively.

increases, implying that the market consensus about the jump and
volatility fear is volatile and that structural parameters must be changed
frequently.

Finally, the impact of the jump component is examined. The MAEs
of the J model are smaller compared to those of the BS model by 0.03
(0.02) and 0.05 (0.04) for 1-day- (1-week-) ahead pricing calls and puts,
respectively. The SV model’s MAEs decrease to 0.07 (0.03) and 0.06
(0.04) for 1-day- (1 week-) ahead pricing calls and puts, respectively,
when compared to those of the BS model. In other words, the effects of
the reduction of pricing errors for the SV model are much better compared
to those for the J model. On the other hand, consider the SVJ model that
adds the jump component to the SV model. The SVJ model reduces
pricing errors of BS to 0.07 (0.04) and 0.06 (0.05) for 1-day- (1-week-)
ahead pricing calls and puts, respectively. The difference between
the performance of the SV model and the SVJ model is smaller than
that between the performance of the J model and the SVJ model.



Pricing and Hedging Short-Term Options 1003

TABLE VII

One-Week-Ahead Out-of-Sample Pricing Errors

S�K �0.94 0.94–0.97 0.97–1.00 1.00–1.03 1.03–1.06 �1.06 All

Panel A: Calls

MAE BS 0.28 0.34 0.37 0.40 0.40 0.33 0.33
J 0.22 0.33 0.36 0.39 0.40 0.38 0.31

SV 0.22 0.32 0.35 0.36 0.37 0.37 0.30
SVJ 0.21 0.31 0.34 0.36 0.36 0.37 0.29

MSE BS 0.11 0.21 0.25 0.25 0.31 0.84 0.31
J 0.11 0.21 0.25 0.28 0.33 0.84 0.31

SV 0.10 0.20 0.25 0.24 0.29 0.83 0.30
SVJ 0.11 0.20 0.24 0.24 0.29 0.83 0.30

Panel B: Puts

MAE BS 0.46 0.41 0.37 0.32 0.28 0.23 0.34
J 0.41 0.40 0.35 0.33 0.28 0.17 0.30

SV 0.40 0.39 0.35 0.32 0.26 0.17 0.30
SVJ 0.40 0.39 0.34 0.32 0.26 0.17 0.29

MSE BS 0.51 0.46 0.30 0.33 0.19 0.11 0.31
J 0.51 0.43 0.30 0.32 0.19 0.11 0.30

SV 0.47 0.42 0.29 0.31 0.19 0.11 0.29
SVJ 0.43 0.39 0.26 0.30 0.17 0.10 0.26

Note. This table reports 1-week-ahead out-of-sample pricing errors for the KOSPI 200 option with respect to
moneyness. S�K is defined as moneyness, where S denotes the asset price and K denotes the strike price.
Each model is estimated every day during the sample period, and 1-week-ahead out-of-sample pricing errors
are computed with estimated parameters from 1-week ago. MAE denotes mean absolute errors and MSE
denotes mean-squared errors. BS denotes the Black and Scholes (1973) model, and J denotes the Bates
(1991) jump-diffusion model. SV and SVJ denote the Bakshi et al. (1997) stochastic-volatility model and
stochastic-volatility jump-diffusion model, respectively.

To summarize, the jump component only has marginal effects, even for
pricing short-term options. The SVJ model shows the best performance
among all the models.

Hedging Performance

Hedging is often used as a tool of risk management to cover the positions
in the underlying asset. Because there are several risk factors in the pro-
posed models, the need for a perfect hedge may arise in situations where
not only is the underlying price risk present, but so is volatility, or jump
risk. To implement this hedging practice, it should be recognized that a
perfect hedge is not practically feasible in the presence of stochastic
jump sizes. In line with the measure of hedging performances in Dumas,
Fleming, and Whaley (1998) and Gemmill and Saflekos (2000), the
hedging error is defined as follows:

et � �O � �O* (8)
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where �O is the change in the reported market price from day t until day
t � 1 or t � 7, and �O* is the change in the theoretical price of the
model.

Tables VIII and IX present 1-day and 1-week hedging errors over
alternative moneyness categories, respectively. For both 1-day- and 1-week-
ahead hedging activities, the SVJ model shows better performance with
smaller errors, closely followed by the SV model. The tail-end models are
the J model and the BS model for calls and puts, respectively. As discussed
by Dumas et al. (1998) in a different context, the stability of the errors
(or, at least, strongly and serially dependent as it suits a specification
error) is an important factor to determine the ranking of the hedging
performances. In the results of the out-of-sample pricing performance,
MSEs of options are smaller in the SV or SVJ model compared to those
in the BS or J model. In short, the hedging results are similar to the
characteristics of MSEs of out-of-sample pricing, consistent with

TABLE VIII

One-Day-Ahead Hedging Errors

S�K �0.94 0.94–0.97 0.97–1.00 1.00–1.03 1.03–1.06 �1.06 All

Panel A: Calls

MAE BS 0.16 0.25 0.26 0.30 0.33 0.36 0.24
J 0.15 0.25 0.26 0.32 0.34 0.36 0.24 

SV 0.13 0.22 0.23 0.27 0.30 0.33 0.21
SVJ 0.13 0.22 0.23 0.27 0.30 0.33 0.21

MSE BS 0.07 0.17 0.14 0.21 0.31 0.70 0.22
J 0.07 0.17 0.13 0.23 0.34 0.72 0.23

SV 0.06 0.15 0.11 0.18 0.30 0.63 0.20
SVJ 0.06 0.14 0.11 0.18 0.29 0.63 0.20

Panel B: Puts

MAE BS 0.38 0.36 0.29 0.27 0.22 0.12 0.25
J 0.37 0.35 0.28 0.26 0.20 0.11 0.24

SV 0.37 0.33 0.28 0.24 0.20 0.10 0.23
SVJ 0.37 0.34 0.28 0.24 0.19 0.10 0.23

MSE BS 0.40 0.42 0.19 0.20 0.12 0.04 0.20
J 0.41 0.43 0.19 0.20 0.12 0.04 0.21 

SV 0.40 0.37 0.17 0.19 0.10 0.03 0.19 
SVJ 0.39 0.39 0.16 0.19 0.10 0.03 0.19 

Note. This table reports 1-day-ahead hedging error for the KOSPI 200 option with respect to moneyness.
Hedging errors are defined as the difference between the change in the reported market price and the change
in the model’s theoretical price from day t to day t � 1. MAE denotes mean absolute errors and MSE denotes
mean-squared errors. BS denotes the Black and Scholes (1973) model, and J denotes the Bates (1991) jump-
diffusion model. SV and SVJ denote Bakshi et al. (1997) stochastic-volatility model and stochastic-volatility
jump-diffusion model, respectively.
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TABLE IX

One-Week-Ahead Hedging Errors

S�K �0.94 0.94–0.97 0.97–1.00 1.00–1.03 1.03–1.06 �1.06 All

Panel A: Calls

MAE BS 0.22 0.31 0.35 0.35 0.39 0.38 0.30
J 0.22 0.32 0.37 0.37 0.41 0.41 0.31 

SV 0.20 0.30 0.36 0.36 0.37 0.36 0.29
SVJ 0.20 0.30 0.35 0.34 0.37 0.37 0.29

MSE BS 0.11 0.19 0.22 0.21 0.75 0.50 0.26
J 0.12 0.20 0.25 0.27 0.87 0.56 0.29

SV 0.10 0.17 0.24 0.23 0.66 0.48 0.24
SVJ 0.10 0.17 0.22 0.21 0.66 0.49 0.24

Panel B: Puts

MAE BS 0.43 0.43 0.37 0.35 0.28 0.17 0.31 
J 0.43 0.42 0.37 0.34 0.28 0.16 0.31 

SV 0.42 0.42 0.37 0.34 0.28 0.16 0.30 
SVJ 0.42 0.43 0.36 0.34 0.27 0.15 0.30 

MSE BS 0.47 0.51 0.24 0.24 0.21 0.07 0.26 
J 0.47 0.54 0.28 0.25 0.23 0.07 0.27 

SV 0.47 0.48 0.27 0.26 0.25 0.07 0.27 
SVJ 0.45 0.46 0.25 0.23 0.23 0.06 0.25 

Note. This table reports 1-week-ahead hedging error for the KOSPI 200 option with respect to moneyness.
Hedging errors are defined as the difference between the change in the reported market price and the change
in the model’s theoretical price from day t to day t � 7. MAE denotes mean absolute errors and MSE denotes
mean-squared errors. BS denotes the Black and Scholes (1973) model, and J denotes the Bates (1991) jump-
diffusion model. SV and SVJ denote the Bakshi et al. (1997) stochastic-volatility model and stochastic-volatility
jump-diffusion model, respectively.

the conjecture of Dumas et al. (1998). As a result, it is concluded that
the stochastic-volatility term is the most important factor for hedging
short-term options, same as in the pricing results.

Validation

Unike what is done when two measures (MAEs and MSEs) are used, here
the models are compared by using the statistics to draw the concrete
results.11 Figure 1 summarizes the pairwise comparison results among
the models by providing the t statistics of the probability that one model is
better than the other. Regarding the out-of-sample pricing performance,
the t statistics of the difference between each model’s absolute pricing
errors are shown in Panel A. The t statistics of the difference between
each model’s absolute hedging errors are shown in Panel B.

11Call and put options are included together in the analysis.
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Panel A: Out-of-sample pricing

Panel B: Hedging

20.49**

19.94**

1.066.03**5.98**

1day BS J SV SVJ

7.88**

10.88**

7.44**7.33**2.25**

1week BS J SV SVJ

9.77**9.06**

6.09**2.34**

23.71**

17.74**

6.10**

1day BS J SV SVJ

8.97**

8.01**

4.67**

1week BS J SV SVJ

FIGURE 1
Differences among the errors of each model.

The comparison results are similar to those using MAEs. For both
out-of-sample pricing and hedging performance, the SV model is exceed-
ingly superior to the BS model. The SV model shows better performance
than the J model. Also, the SVJ model outperforms the SV model.
However, the significance of the superiority of the SVJ model compared
to the BS model is similar to that of the SV model compared to the BS
model. In the statistical analysis, the jump component shows minor mar-
ginal effects. Overall, the stochastic-volatility term is the most important
factor for pricing and hedging short-term options.
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CONCLUSION

It is known that the existence of jumps is significant under the dynamics of
underlying assets only and not in the options market. Nonetheless, it has
been widely documented in the literature that jumps may be important for
pricing and hedging short-term options. Previous research has tested the
usefulness of jumps, but have not separated the cases where only jumps
themselves exist from those where jumps are additionally added to sto-
chastic volatility. Here the impact of jumps on short-term options was
assessed by comparing the J model with the SV model and the SVJ model
from three perspectives (a) in-sample pricing, (b) out-of-sample pricing,
and (c) hedging effectiveness. It is concluded that the jump component
has only a marginal effect, and the stochastic-volatility component is of
the most importance even for pricing and hedging short-term options. The
SVJ model performs the best for in-sample pricing, out-of-sample pricing,
and hedging effectiveness. The J model shows the worst performance, and
the differences between the SVJ and the SV models are small. Thus, even
for short-term index options, jumps turn out to be insignificant.

APPENDIX

The characteristic functions for the SVJ model are respectively given by

(A-1)

and

(A-2)�
if(if � 1)(1 � e�jn*t)

2jn* � [jn* � kn � ifrsn](1 � e�jn*t)
V(t) d

� l(1 � mJ)t :(1 � mJ)
ife(if�2)(if�1)sJ

2

� 1 ; � lifmJt

�
un

sn
2[jn* � kn� ifrsn]t � if ln[S(t)]

f̂2 � exp c�if ln[B(t, t)] �
un

sn
2 c2 ln a1 �

[jn* � kn� ifrsn](1 � e�jn* t)

2jn
bd

�
if(if � 1)(1 � e�jnt)
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V(t) d
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�
un

sn
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f̂1 � exp c�if ln[B(t, t)] �
un

sn
2 c2 lna1 �

[jn� kn � (1 � if)rsn](1 � e�jnt)

2jn
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f̂j
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where

The characteristic functions for the SV model can be obtained by
setting l� 0 in (A-1) and (A-2).
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